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Outline

Goal: Identify the item having the highest average return.

Common assumption: Gaussian with known variance.
A\ Too restrictive !
This paper:
Unknown variance !

Two approaches to deal with unknown variances:
v= Plug in the empirical variance,
r= Adapt the transportation costs.
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Best-arm identification (BAI)

K arms, v, € D distribution of arm a € [K]

v Uy = N(pta, 02) where (114, 02) are unknown.

Goal: identify unique a* = arg max, p, with confidence 1 — §.
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Best-arm identification (BAI)

K arms, v, € D distribution of arm a € [K]

v vy = N (e, 02) where (114, 02) are unknown.
Goal: identify unique a* = arg max, p, with confidence 1 — §.

Algorithm: at time ¢,

@ Sequential test: if the stopping time 75 is reached, then return the
candidate answer a;.

e Sampling rule: pull arm a; and observe X; ~ v,,.
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Best-arm identification (BAI)

K arms, v, € D distribution of arm a € [K]

v vy = N (e, 02) where (114, 02) are unknown.
Goal: identify unique a* = arg max, p, with confidence 1 — §.

Algorithm: at time ¢,

@ Sequential test: if the stopping time 75 is reached, then return the
candidate answer a;.

e Sampling rule: pull arm a; and observe X; ~ v,,.
Objective: Minimize E, [75] for d-correct algorithms

P, [15 < 400, Gy #a*] < 9.
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Sample complexity lower bound

Garivier and Kaufmann (2016): For all d-correct algorithm,

.. EV[TJ]
K > * 2
Yv € D*, llgr:glflog(l/é)_T(M’a)’



Sample complexity lower bound

Garivier and Kaufmann (2016): For all d-correct algorithm,

.. EV[TJ]
K > * 2
Yv € D*, hltglglf—log(l/é) >T"(p,07),

where T*(p, 0)™! = maxyea , ming 4.+ C(a*, a; w) and

* . o . (:ub - >‘)2
2C(a*,a;w) =  inf E wylog (1 4+ ——5—) .
2
Ae(/”/(h/'[’a*) be{a* tl} O-b
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Sample complexity lower bound

Garivier and Kaufmann (2016): For all d-correct algorithm,

.. EV[TJ]
K > * 2
Yv € D*, hgglf—log(l/é) >T"(p,07),

where T*(p, 0)™! = maxyea , ming 4.+ C(a*, a; w) and

N . (1 — A)?
20(@ ,a; U}) = inf Z Wy lOg (1 + O_—g .

AE(Lha, a*
(Hasp )be{a*,a}

Known variance

(o =N (par = pa)?

200 *; ) = inf = .
2(@ a w) m ) Z wb O_g Jg*/wa* + O_g/wa

e s
(/‘La Ha* be{a*,a}

ki 2L, 20
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How to obtain a d-correct sequential test ?

r= recommend the empirical best arm

(; = argmax [ q ,
a€[K]

with Nyo =37 111 (a5 = a) and MLE (4, 07) defined as
1 2 1 2
1(as=a)X, and Ut’a:—Z]l(asza) (Xs—pra)

b el

Ht.a =
b et
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How to obtain a d-correct sequential test ?

r= recommend the empirical best arm

(; = argmax [ q ,
a€[K]

with Nyo =37 111 (a5 = a) and MLE (4, 07) defined as
1 2 1 2
1(as=a)X, and Ut’a:—Z]l(asza) (Xs—pra)

b el

Ht.a =
b et

w2 calibrated GLR and EV-GLR stopping rules.
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Stopping rules

GLR stopping rule [Adapt]
75 = inf{t € N |Va # a;, Z,(t) > ca,a(Nt,0)},

. (tep — )\)2
27,(t) = f E N,y 1 14—,
(1) in | v log ( + =

AE [t 0k, be{ar.a} tb

where (cqp)ap is @ family of thresholds.
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Stopping rules

GLR stopping rule [Adapt]
75 = inf{t € N | Va # a;, Zo(t) > ca,.a(Nt,0)},

— )2
2Za(t> = inf Z Nt,b log (1 + %}_—2)) y

)\E[Mt,mﬂt,&t] befar,a} tb
where (cqp)ap is @ family of thresholds.

EV-GLR stopping rule [Plug in]
75V =inf{t € N|Va # a,, Z;'(t) > 5, (N, 0)},

_ (ra = )
Utat/Ntat+Uta/Nta

22,7 (t) =

where (¢E%)azs is a family of thresholds.
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Calibration of the stopping thresholds

Example: GLR stopping rule [Adapt]

v= Calibration by time-uniform concentration: with probability 1 — ¢,

N2
VteNVYa#a, Y Nylog (1 n M) < a0 (N1, 0) .

o
be{a,a*} tab
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Calibration of the stopping thresholds

Example: GLR stopping rule [Adapt]
v= Calibration by time-uniform concentration: with probability 1 — ¢,

N2
VteNVYa#a, Y Nylog (1 n M) < a0 (N1, 0) .

g
be{a,a*} tab

Per-arm concentration:
= Student thresholds, quantiles-based as (pp — 1) /0y ~ TN, u—1-
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Calibration of the stopping thresholds

Example: GLR stopping rule [Adapt]
v= Calibration by time-uniform concentration: with probability 1 — ¢,

N2
VteNVYa#a, Y Nylog (1 n M) < a0 (N1, 0) .
g
be{a,a*} tab

Per-arm concentration:
= Student thresholds, quantiles-based as (pp — 1) /0y ~ TN, u—1-

== Box thresholds, combining confidence regions on 1, and o?,.
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Concentration of the empirical variances

Theorem
With probability 1 — 6,
VteN, o7 ,/0® —1<2(log(1/8) +loglogt) /t,

21log(1/9)
> 2 ONE)
vtz log log(1/6)’

Proof idea: “peeling” method on sub-Exp processes (Howard et al., 2020).

o7 1/0* — 12 —2(log(1/6) + loglogt) /t .

y
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Beyond box: pairwise concentration

15 KL thresholds
Theorem
With probability 1 — 6,

Vt € N7va 7é a’*7 Z Nt,b KL((/'Lt,ba 0-15271))7 (/*Lba O-Z)) < Ca,a* (Nt7 5) )

be{a,a*}

g ] 2log(1/d
where ¢, (N, ) = +oo if min{N,, N,} < %' else

cap(N,0) = log(1/9) + Z loglog NV, .
ce{a,b}

v

Proof idea: “peeling” with a crude per-arm concentration to do a quadratic
approximation of KL, hence obtaining concentration on the sum of KL.
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Best of Both (BoB) thresholds

Theorem

The family of BoB thresholds is -correct for the GLR stopping rule. It is

defined as c, (N, d) = +o0 if min{N,, N;} < % else solution of

1
maximize > Z N.log (1 +y.) under the constraints
ce{a,b}
Ve € {a,b}, y.>0, max{z.y., 1 —z.} < (log(l/é) + log log V),
1
= Z N (14 ye)xe — 1 —logz.) < log(1/d) + Z loglog N, .

ce{a,b} ce{a,b}

Proof idea: combine per-arm and pairwise concentration (Box and KL).
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Simulations

pu=(0,-0.2), 0> = (1,0.5), uniform sampling.
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Figure: Thresholds for the GLR stopping rule as a function of (a) log (1/6) for

t = 5000 and (b) ¢ for 6 = 0.01.
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Sampling rule wrappers

Example: EB-TCI (Jourdan et al., 2022)
== sample leader BEE, = a, with probability 1/2, else sample challenger
[Adapt] C1S = argmin{Z,(t) +log N, .},
aFa

[Plug in] CEY® = argmin{ZEV(t) + log N, } ,
aFat
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Sampling rule wrappers

Example: EB-TCI (Jourdan et al., 2022)
== sample leader BEE, = a, with probability 1/2, else sample challenger
[Adapt] C1S = argmin{Z,(t) +log N, .},
aFa
[Plug in] CEY® = argmin{ZEV(t) + log N, } ,
aFat

Other BAI algorithms studied with the [Adapt]/[Plug in] wrappers:

@ Track-and-Stop (Garivier and Kaufmann, 2016),

o DKM (Degenne et al., 2019) [empirically],

e FWS (Wang et al., 2021) [empirically].
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Sample complexity upper bound

Theorem ([Adapt])

Using the GLR stopping with an asymptotically tight family of thresholds,
EB-TCI satisfies that, for instances v € DX having distinct means,

3 ]EV [7-5]
1 2L g )
msup 18] = 1/2(V)

Asymptotically tight threshold, i.e. ¢(+, ) ~s_0 log(1/4).
v~ KL and BoB thresholds are asymptotically tight (not Student and Box).
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Sample complexity upper bound

Theorem ([Adapt])

Using the GLR stopping with an asymptotically tight family of thresholds,
EB-TCI satisfies that, for instances v € DX having distinct means,

. ]EV [7-6]
1 0 < T (V).
msup 18] = 1/2()

Asymptotically tight threshold, i.e. ¢(+, ) ~s_0 log(1/4).
v~ KL and BoB thresholds are asymptotically tight (not Student and Box).

Theorem ([Plug in])

For all asymptotically tight family of thresholds (c,p)a.» and problem
independent constant o« > 0, combining EB-EVVTCI with the EV-GLR
stopping rule using (c«cqp)azb yields an algorithm which is not 6-correct.
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Empirical results (0 = 0.01)
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Figure: Empirical stopping time on random Gaussian instances (K = 10):
(p1,0%) = (0,1) and —pq ~ U([0.2,1.0]) and 02 ~ U([0.1,10]) for all @ # 1.
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Conclusion

Two approaches to deal with unknown variances:
Plug in the empirical variance,

Adapt the transportation costs.

Two stopping rules, GLR and EV-GLR,

calibrated with time-uniform concentration.

Two sampling rule wrappers, e.g. EB-TCI.

The impact of not knowning the variance is rather small !
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Empirical variance: time-uniform concentration

Concentration on o7, after t + 1 i.i.d. samples

With probability 1 — 9,

VteN, o7 /o® <W_i(1+2¢9(t,8)/t) — 1/t with W_i(z)~z+logx,
Vt > to(9), 07,1/0% > Wo(l +2g(t,0)/t) — 1/t with Wo(z) e ™",
where ¢(t,6) ~ log(1/0) + loglogt and ty(d) ~ 2log(1/0)/loglog(1/6).
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