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Phase Ill clinical trials

Y

Goal: Identify a treatment with a high efficiency.

Setting: Pure exploration for stochastic multi-armed bandits.

v= Sequential hypothesis testing with adaptive data collection.



Sequential decision making under uncertainty

After treating n — 1 patients, the physician has
v a guessed answer for a good treatment i,, € [K] .

As the n-th patient enters, the physician selects
v atreatment I, € [K] for administration.

Then, it observes a realization X,, ~ vy, with v; = B(u;) .
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Best-Arm Identification (BAI)

K arms: arm i € [K] with v; = B(u;) € D where y; € (0,1) .

Goal: identify the unique best arm i* = arg max; ) i -
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K arms: arm i € [K] with v; = B(u;) € D where y; € (0,1) .
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Algorithm: at time n ,
e Recommendation rule: recommend a candidate answer i, .
e Stopping rule: dictate when to stop sampling .
e Sampling rule: pull an arm I,, and observe X,, ~ vy, .



Best-Arm Identification (BAI)

K arms: arm i € [K] with v; = B(u;) € D where y; € (0,1) .
Goal: identify the unique best arm i* = arg max; ) i -

Algorithm: at time n ,
e Recommendation rule: recommend a candidate answer i, .
e Stopping rule: dictate when to stop sampling .
e Sampling rule: pull an arm I,, and observe X,, ~ vy, .

Fixed-confidence: given a confidence pair ¢ , define a J-correct
stopping time 7 , i.e. P, (75 < 00,1, # %) <0 .
== Minimize the expected sample complexity E, [7;] .
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Lower bound on the expected sample complexity

(Garivier and Kaufmann, 2016) For all §-correct algorithm,
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Lower bound on the expected sample complexity

(Garivier and Kaufmann, 2016) For all §-correct algorithm,

.. ]EV[T(S]
K > *
WEDT MR iog(iye) = Tal)

where the inverse of the characteristic time is

—1 — max min CKL(i*,j; v, w) 5

*
k.(V) WEA g jH*

2(pi — pj)?

with  Ckp (4, 7;v,w) = 1 (1 > p;j)

1/wl-—|— 1/’(1)] .
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Lower bound on the expected sample complexity

(Garivier and Kaufmann, 2016) For all d-correct algorithm,

.. ]EVI:T(S]
K > *
Vv e D7, llgrilélf log(1/0) = T (v),

where the inverse of the characteristic time is

EL<V)_1 = max min Cxy (7%, j; v, w) ,
wEAK j#l*
. o (i — )
with C : ~ 1 (> i XA
KL(27]7V7w> <:u N]) 1/’11)@—1—1/”(1)]

Algorithms: Track-and-Stop, online optimization, Top Two.



TTUCB (Jourdan and Degenne, 2023)

= Recommend the empirical best arm i, = arg max; ¢, fin,i -
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= Recommend the empirical best arm i, = arg max; ¢, fin,i -

v= Generalized likelihood ratio (GLR) stopping rule

75 = inf{n € N | n;iAnCKL,n(in,j) >c(n—1,0)},
JFtn

with Ckrn (7, 7) = Cku(i, 5 vn, Ny) @and ¢(n, 6) ~ log(1/9) + O(logn) .



TTUCB (Jourdan and Degenne, 2023)

= Recommend the empirical best arm i, = arg max; ¢, fin,i -
v Generalized likelihood ratio (GLR) stopping rule

75 = inf{n € N | H;ln CxLn(in,j) >c(n—1,0)},
JFtn

with Ckrn (7, 7) = Cku(i, 5 vn, Ny) @and ¢(n, 6) ~ log(1/9) + O(logn) .

v Sample I, € {B,, C,} uniformly at random where

UCB leader: B, = argmax {Mn,i + \/10g(n)/Nn,i} )

1€[K]

TC challenger: C,, = argmin Cxp (B, j) -



Differential privacy

/\ Rewards may reveal sensitive information about individuals !



Differential privacy

/\ Rewards may reveal sensitive information about individuals !

Definition (Dwork and Roth, 2014)

A randomised algorithm A satisfies <-DP if for any two neighbouring
datasets d and d’ that differ only in one row and for all sets of output O ,

P(A(d) € O) < exp(e)P (A(d) € O) .
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Trust models for differentially private BAI

Dataset

Randomized Output
Algorithm
d A 1 A(d)
e-local DP e-global DP

e-local differential privacy:
= A has only access to private rewards.

e-global differential privacy:
== A has access to the true rewards, but its output is private.
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Local Differentially Private Best Arm Identification

Theorem
For all §-correct =-local DP algorithm and all instance v

1

E,[1s5) > max {T%L,(v), c(e) " Ty (v) } log —— WL

with c(e) = min{4, e*}(e* — 1)* and T, »(v) = T, (va) /2 .




Local Differentially Private Best Arm Identification

Theorem
For all §-correct =-local DP algorithm and all instance v

" 1
E, [75] > max { Ty (v), ¢(e) ' Tiy2(v) } log 246

with c(e) = min{4, e*}(e* — 1)* and T, »(v) = T, (va) /2 .

Two hardness regimes depending on ¢ and the environment v .

thv2 )

v Low-privacy: c(€) > -2,

. Privacy is for “free”

Tr;v2 )
Tg (V)

v High-privacy: c(g) > . Privacy scales the cost by 1/¢2



CTB-TT: e-local DP version of TTUCB

©® Private estimator 1, based on randomised response:
= Observe private rewards X, ~ B (X"e—;l”“> instead of X, .

® Plug 1, in TTUCB.



CTB-TT: e-local DP version of TTUCB

©® Private estimator 1, based on randomised response:

= Observe private rewards X, ~ B (xle—;ll)“) instead of X, .

® Plug 1, in TTUCB.

Theorem
CTB-TT is e-local DP, 5-correct and satisfies

lim sup E, [7;] §<
50 log(1/6)

2\’




Empirical stopping time (6 = 0.01)
(left) 11 = (0.95,0.9,0.9,0.9,0.5) and (right) 2 = (0.75,0.7,0.7,0.7,0.7).
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Global Differentially Private Best Arm Identification

Theorem
For all -correct -global DP algorithm and all instance v ,

B frs] 2 ma (T (v), Ty (v)/(62)}log =

where Tg, (v) & 3 4 (pie — pi) = and Ty (v) ~ > i (Bar — pi)




Global Differentially Private Best Arm Identification

Theorem
For all -correct -global DP algorithm and all instance v ,

1
2.40°

where Ty, (v) & 3, 4 (e — 1) 72 @and Ty (v) & 30, (e — 1) " -

E, [rs] > max {Tgp,(v), Try(v)/(6e) } log o—=

Two hardness regimes depending on ¢ and the environment v

T*V(V) H F 1] ]
TTZL(V) . Privacy is for “free”.

v Low-privacy regime: 6 >

v High-privacy regime: 6e < TV . Privacy is “dominating”.



AdaP-TT: e-global DP version of TTUCB

©® Private estimator with Laplace noise: 1, = ., + Lap (ﬁ) .
=~ Doubling and forgetting, i.e. phases per arm.

® Plug /1, in TTUCB.
= Private stopping threshold: ¢(n, 6) ~ log(1/8) + - log(1/6)* .
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which is O (max {1}, (v), Tty (v)/e}) for most instances.




AdaP-TT: e-global DP version of TTUCB

©® Private estimator with Laplace noise: 1, = ., + Lap (ﬁ) .
=~ Doubling and forgetting, i.e. phases per arm.

® Plug /1, in TTUCB.
== Private stopping threshold: c(n, 6) ~ log(1/8) + -1 log(1/0)” .

Theorem
AdaP-TT is e-global DR, 5-correct and satisfies

o 1 og<1/5>

which is O (max {1}, (v), Tty (v)/e}) for most instances.

< ATy 4(v) (1 +/1+ (Amax/e)Z) ,

AdaP-TT* algorithm: modified private transportation costs.



Empirical stopping time (6 = 0.01)
(left) 11 = (0.95,0.9,0.9,0.9,0.5) and (right) 2 = (0.75,0.7,0.7,0.7,0.7).
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Conclusion

Differentially Private Best Arm Identification:
e-local and e-global trust models,
lower bounds on the expected sample complexity,
matching upper bounds for modified TTUCB.

Perspectives:
@ other trust models, e.g. shuffle DP,
@ other DP settings, e.g. (¢,0)-DP or Rény-DP.
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