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Motivation
Initial goal: Identify the item having the highest averaged return.

Problem: When the two best items have highly similar averaged return, the num-
ber of samples required to differentiate them is large.

Corrected goal: Identify one item which is ε-close to the best one (ε-BAI).

Challenge: Multiple correct answers.

Problem Statement
Transductive linear Gaussian bandits:
• arm a ∈ K, finite subset of Rd,
• answer z ∈ Z, finite subset of Rd,
• unknown bounded mean parameter, µ ∈ M ⊆ Rd.

At time t, pull at ∈ K and observe Xat
t ∼ N (⟨µ, at⟩, 1).

Goal: Identify one ε-optimal answer, z ∈ Zε(µ) with ε ≥ 0.

Two notions of ε-optimality:
• additive, Zadd

ε (µ) = {z ∈ Z : ⟨µ, z⟩ ≥ maxz∈Z⟨µ, z⟩ − ε},
• multiplicative, Zmul

ε (µ) = {z ∈ Z : ⟨µ, z⟩ ≥ (1− ε)maxz∈Z⟨µ, z⟩}.

Greedy answer, z⋆(µ) = argmaxz∈Z⟨µ, z⟩, unique correct answer in BAI (ε = 0).

(ε, δ)-PAC identification strategy

Fixed-confidence setting, δ ∈ (0, 1). Three rules:
• sampling rule, at ∈ K,
• recommendation rule, zt ∈ Z,
• stopping rule, τδ.

Requirement: (ε, δ)-PAC, Pµ [τδ < +∞, zτδ /∈ Zε(µ)] ≤ δ.

Objective: Minimize Eµ[τδ].

? What is the best one could achieve ?

☞ Degenne and Koolen (2019): For all (ε, δ)-PAC strategy, for all µ ∈ M,

lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ Tε(µ) ,

where the inverse of the characteristic time is

Tε(µ)
−1 = max

z∈Zε(µ)
max
w∈△K

inf
λ∈¬εz

1

2
∥µ− λ∥2Vw

.

Alternative to z ∈ Z: ¬εz = {λ ∈ M : z /∈ Zε(λ)}.

△K simplex, Vw =
∑

a∈K waaaT design matrix with norm ∥ · ∥Vw
.

Furthest answer
Identifying z as an ε-optimal answer is equivalent to rejecting its alternative.

? How to choose among the set of ε-optimal answers ?

☞ Furthest answer: zF (µ) is the ε-optimal answer for which its alternative is the
easiest to reject by using an optimal allocation over arms wF (µ).

(zF (µ), wF (µ)) = argmax
(z,w)∈Zε(µ)×△K

inf
λ∈¬εz

1

2
∥µ− λ∥2Vw

.

Assumption: unique furthest answer, i.e. |zF (µ)| = 1.

Numerical simulations: z1 = µ = (1, 0), z2 ∈ Zmul
ε (µ) and z3, z4 ∈ Z \ Zmul

ε (µ).

Figure 1: (a) Proportion of zF (µ) /∈ z⋆(µ). (b) Ratio between Tmul
ε (µ) and the value at z⋆(µ).

Adapting any BAI algorithm for ε-BAI

? How to stop to obtain an (ε, δ)-PAC strategy ?

☞ GLR stopping rule: Given zt ∈ Zε(µt−1), stop when

inf
λ∈¬εzt

∥µt−1 − λ∥2VNt−1
> 2β(t− 1, δ) , (1)

where Na
t−1 =

∑t−1
s=1 1{as=a}, µt−1 = V −1

Nt−1

∑t−1
s=1 X

as
s as and

β(t, δ) = 2K ln (4 + ln (t/K)) +KCgG (ln (1/δ) /K) , (2)

with CgG(x) ≈ x+ ln(x), see Kaufmann and Koolen (2018).

? Which zt ∈ Zε(µt−1) should we recommend to stop as early as possible ?

☞ Instantaneous furthest answer: ε-optimal answer with highest GLR

zF (µt−1, Nt−1) = argmax
z∈Zε(µt−1)

inf
λ∈¬εzt

∥µt−1 − λ∥2VNt−1
.

Other choices are inefficient: greedy (samples) or furthest (computation) answers.

? How to modify any BAI algorithms to be (ε, δ)-PAC ?

☞ use GLR stopping rule with zt ∈ zF (µt−1, Nt−1),
☞ keep the sampling rule unchanged.

10% lower empirical stopping time when using zF (µt−1, Nt−1) instead of z⋆(µt−1).

LεBAI

Input: Z-oracle LZ and learner LK on △K .
Pull once each arm a ∈ K, set n0 = K and Wn0

= 1K ;

For t ≥ n0 + 1

Get zt ∈ zF (µt−1, Nt−1);

If (1) holds for zt then return zt;

Get
(
z̃t, w

LK

t

)
from LZ × LK;

Let wt =
1K

tK +
(
1− 1

t

)
wLK

t and Wt = Wt−1 + wt;

Closest alternative: λt ∈ argminλ∈¬εz̃t ∥µt−1 − λ∥2Vwt
;

Optimistic gains: ∀a ∈ K, Ua
t =

(
∥µt−1 − λt∥aaT +

√
cat−1

)2;

Feed LK with gain gt(w) = (1− 1
t )⟨w,Ut⟩;

Pull at ∈ argmina∈K Na
t−1 −W a

t , observe Xat
t ;

Theorem 1. Let LK with sub-linear regret (e.g. AdaHedge) and LZ returning
z̃t ∈ zF (µt−1). Using (2) as stopping threshold β(t, δ), LεBAI yields an (ε, δ)-PAC
algorithm and, for all µ ∈ M such that |zF (µ)| = 1,

lim sup
δ→0

Eµ [τδ]

ln (1/δ)
≤ Tε(µ) .

Efficient heuristic: LZ uses z̃t = zt.

Experiments

Hard instance with K = Z: z1 = µ = (1, 0), z2 = (0, 1), z3 = (cos(ϕ1), sin(ϕ1)),
z4 = (cos(ϕ2), sin(ϕ2)) where (ϕ1, ϕ2) =

(
1
10θε,

11
10θε

)
, θε = arccos(1 − ε) and

ε = 5%.

Figure 2: Empirical stopping time at δ = 1% (star equals mean) for (a) modified BAI algorithms
(add) and (b) heuristic LεBAI (mul). “-G” is zt ∈ z⋆(µt−1). “-O” is the ε-gap stopping rule with
zt ∈ z⋆(µt−1).

Conclusion
1. Don’t choose greedily: aim at identifying the furthest answer !

2. Simple procedure to adapt your favorite BAI algorithm to ε-BAI.

3. LεBAI, asymptotically optimal and empirically competitive.


