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Section 1

Motivation
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Clinical trials (phase II/III)

Treatments = Arms = Answers

B(µ1) B(µ2) B(µ3) B(µ4)

For the t-th patient,
administer a treatment at and
observe a response Xat

t ∈ {0, 1} such that Pµ[Xat
t = 1] = µat .

Goal: identify the best treatment (BAI), a∗(µ) = argmaxa∈[4] µ
a.

Marc Jourdan ε-BAI for Linear Bandits November 19, 2021 3 / 37



BAI can be “easy”

“Easy” instance

B(0.2) B(0.8) B(0.6) B(0.5)

Few samples to identify the red treatment as the best one.
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or too “hard” and not even required

“Hard” instance

B(0.2) B(0.8) B(0.799) B(0.5)

Numerous samples to distinguish between the red and blue treatments.
Question: Do we really need to identify the red treatment or would we
also be satified with the blue one ?
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Identifying a relatively good treatment

Goal: identify one treatment which is ε-close to the best treatment (ε-BAI).

B(0.2) B(0.8) B(0.799) B(0.5)

Few samples to identify the red or the blue treatments as relatively
good treatments.

Question: At the end of the clinical trial, should we recommend the red
treatment (BAI) or the blue one ?
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Choosing a restaurant for a special occasion

Unknown partner’s taste µ = (quantity, visual) = (0.6, 0.5).

“Daily”/“Cheap” meals = Arms

a1 = (0.9, 0.1) a2 = (0.2, 0.7) a3 = (0.5, 0.2) a4 = (1, 0.1)

For the t-th dinner at home,
choose a “daily” meal at and
observe a response Xat

t ∼ N (µat , 1) where µat = 〈µ, at〉.
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Choosing a restaurant for a special occasion

“Fancy”/“Expensive” meals = Answers

z1 = (0.8, 0.4) z2 = (0.3, 0.9) z3 = (0.4, 0.3)

Goal: identify one “fancy” meal which is ε-close to the favorite one of your
partner whose taste is µ = (0.6, 0.5).

Question: For the special occasion, should we go eat bibimbap (BAI) or
snails ?
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Section 2

Problem Statement
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Transductive linear Gaussian bandits

Transductive bandits:
arms, K = {ak}k∈[K] ⊆ Rd where Span(K) = Rd,
answers, Z = {zi}i∈[Z] ⊆ Rd.

Linear Gaussian bandits:
unknown mean parameter, µ ∈M ⊆ Rd,
Gaussian distributions, νa = N (〈µ, a〉, 1) for all a ∈ K.

At time t, pull at ∈ K and observe Xat
t ∼ νat .
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ε-best-answer identification (ε-BAI)

Goal: Identify one ε-optimal answer, z ∈ Zε(µ) with ε ≥ 0.

Greedy answer, z∗(µ) = argmaxz∈Z〈µ, z〉.
→ In BAI (ε = 0), z∗(µ) is the unique correct answer.

ε-optimality:
additive, Zadd

ε (µ) = {z ∈ Z : 〈µ, z〉 ≥ 〈µ, z∗(µ)〉 − ε},
multiplicative, Zmul

ε (µ) = {z ∈ Z : 〈µ, z〉 ≥ (1− ε)〈µ, z∗(µ)〉}.

Questions:
How to choose among the ε-optimal answers ?
Can we do better than the greedy answer ?
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(ε, δ)-PAC identification strategy

Fixed-confidence setting, δ ∈ (0, 1)

Three rules:
sampling rule, at ∈ K,
recommendation rule, zt ∈ Z,
stopping rule, τδ.

Requirement: (ε, δ)-PAC, Pµ [zτδ /∈ Zε(µ)] ≤ δ and Pµ [τδ < +∞] = 1.

Objective: Minimize Eµ[τδ].
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Contributions

1 Analyze (ε, δ)-PAC BAI for transductive linear bandits.

2 Don’t choose greedily: aim at identifying the furthest answer !

3 LεBAI (Linear ε-BAI), asymptotically optimal and empirically
competitive.
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Related work
ε-BAI:

Degenne and Koolen (2019), multiple-correct answer setting with
fixed-confidence, Sticky Track-and-Stop (TaS),
Garivier and Kaufmann (2021), (ε, δ)-PAC BAI in MAB for additive
ε-optimality, ε-TaS,
Kocák and Garivier (2021), (ε, δ)-PAC BAI in additive spectral bandits,
SpectralTaS.

Fixed-confidence BAI in linear bandits (to name a few):
Soare et al. (2014), XY-Adaptive,
Xu et al. (2018), LinGapE,
Fiez et al. (2019), RAGE,
Jedra and Proutière (2020), Lazy TaS,
Degenne et al. (2020), LinGame.
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Section 3

Comparing ε-Optimal Answers
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Notations and alternative to z

Notations:
design matrix Vw =

∑
a∈K w

aaaT ∈ Rd×d for any w ∈ (R+)K ,

norm ‖x‖V =
√
xTV x for x ∈ Rd,

simplex of dimension K − 1 is denoted by 4K .

Alternative to z ∈ Z: closure of the set of parameters for which z is not an
ε-optimal answer, ¬εz = {λ ∈M : z /∈ Zε(λ)}.

Identifying z as an ε-optimal answer is equivalent to rejecting the hypothesis
that µ belongs to the alternative to z.

∀z ∈ Z, H0,z : (µ ∈ ¬εz) against H1,z : (z ∈ Zε(µ))
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Asymptotic lower bound

Theorem (Degenne and Koolen (2019))

For all (ε, δ)-PAC strategy, for all µ ∈M,

lim inf
δ→0

Eµ[τδ]
ln(1/δ)

≥ Tε(µ)

where the inverse of the characteristic time is

Tε(µ)
−1 = max

z∈Zε(µ)
max
w∈4K

inf
λ∈¬εz

1

2
‖µ− λ‖2Vw (1)

Asymptotic optimality: for all µ ∈M,

lim inf
δ→0

Eµ[τδ]
ln(1/δ)

≤ Tε(µ)
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Furthest answer

Tε(µ)
−1 = max

z∈Zε(µ)
max
w∈4K

inf
λ∈¬εz

1

2
‖µ− λ‖2Vw

The ε-optimal answer for which its alternative is the easiest to differentiate
from thanks to an optimal allocation over arms wF (µ) ∈ 4K .

(zF (µ), wF (µ))
def
= argmax

(z,w)∈Zε(µ)×4K
inf
λ∈¬εz

1

2
‖µ− λ‖2Vw (2)

Assumption: the furthest answer for µ is unique, |zF (µ)| = 1.

Don’t choose the greedy answer: aim at identifying the furthest
answer !
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Numerical simulations

Multiplicative ε-optimality.
d = 2,M = R2, Z = K (K = 4) and µ = (1, 0).
Given ε, generate 25000 random instances: z1 = µ, z2 ∈ Zε(µ) and
(z3, z4) ∈ (Z \ Zε(µ))2.

Figure: (a) Proportion of draws where zF (µ) 6= z∗(µ). (b) Median of the ratio
between Tmul

ε (µ) and the value at z∗(µ) (when zF (µ) 6= z∗(µ)).
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Numerical simulations

Figure: (a) Proportion of draws where zF (µ) 6= z∗(µ). (b) Median of the ratio
between Tmul

ε (µ) and the value at z∗(µ) (when zF (µ) 6= z∗(µ)).

The furthest answer is often different from the greedy answer (≈ 14%).
The ratio of their characteristic time is on average 0.9.
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Section 4

LεBAI
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Notations and structure of LεBAI

counts of pulled arms, Na
t−1 =

∑t−1
s=1 1{as=a},

OLS/ML estimator, µt−1 = V −1Nt−1

∑t−1
s=1X

as
s as.

After pulling each arm once (n0 = K), at each round t ≥ n0 + 1,
if the stopping condition for the candidate answer zt is met, return zt;
else, the sampling rule returns an arm at to pull and the statistics are
updated based on this new observation.

Assumption: set of parameter is bounded by M .
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Stopping rule
Given zt ∈ Zε(µt−1), stop when the GLR exceeds β(t− 1, δ)

inf
λ∈¬εzt

‖µt−1 − λ‖2VNt−1
> 2β(t− 1, δ) (3)

Lemma

Given any sampling and recommendation rules such that zt ∈ Zε(µt−1),
then using (3) with the threshold

β(t, δ) = 2K ln

(
4 + ln

(
t

K

))
+KCgG

(
ln
(
1
δ

)
K

)
(4)

ensures that Pµ [τδ < +∞∧ ẑ /∈ Zε(µ)] ≤ δ. CgG(x) ≈ x+ ln(x) is defined
in Kaufmann and Koolen (2018).
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Candidate ε-optimal answer

Question: How to choose zt ∈ Zε(µt−1) to stop as early as possible ?

Natural candidates:
greedy answer, zt = z∗(µt−1), sample inefficient,
furthest answer, zt = zF (µt−1), computationally inefficient.

The ε-optimal answer with highest GLR is the instantaneous furthest
answer, zt = zF (µt−1, Nt−1) where

zF (µt−1, Nt−1)
def
= argmax

z∈Zε(µt−1)

inf
λ∈¬εzt

‖µt−1 − λ‖2VNt−1
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Sampling rule

Maxmin saddle-point algorithm:

the agent plays
(
z̃t, w

LK
t

)
∈ Zε(µt−1)×4K thanks to a Z-oracle and

a learner on 4K (e.g. AdaHedge), then
the nature plays the closest alternative,
λt ∈ argminλ∈¬εz̃t ‖µt−1 − λ‖2Vwt where wt =

1
tK

1K +
(
1− 1

t

)
wL
K

t

(logarithmic forced exploration).

Algorithmic ingredients:
tracking, at ∈ argmina∈KN

a
t−1 −W a

t where Wt =
∑t

s=n0+1ws,
optimistic gains, (Ua

t )a∈K, used to
update the learner with gt(w) = (1− 1

t
)〈w,Ut〉.
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Upper bound

Theorem

Let LK with sub-linear regret and LZ such that z̃s ∈ zF (µs−1) and
Assumption 1 holds true. When recommending the instantaneous furthest
answer zt = zF (µt−1, Nt−1) and stopping according to (3) with threshold
β(t, δ) as in (4) for the exploration bonus f(t) = 2β

(
t, t1/3

)
, LεBAI yields a

(ε, δ)-PAC algorithm and, for all µ ∈M such that |zF (µ)| = 1,

lim sup
δ→0

Eµ [τδ]
ln
(
1
δ

) ≤ Tε(µ)

Assumption 1 requires the Z-oracle to be not too good with respect to a
gain not optimized by Z-oracle.
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Section 5

Experiments
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Hard instance

multiplicative ε-optimality,
(ε, δ) = (0.05, 0.1),
5000 runs (std of means with sub-samples of 100 runs).

d = 2,M = R2, Z = 4 and
µ = (1, 0),
z1 = (1, 0), z2 = (0, 1),
z3 = (cos(φ1), sin(φ1)),
z4 = (cos(φ2), sin(φ2)) where
(φ1, φ2) =

(
1
10
θε,

11
10
θε
)
and

θε = arccos(1− ε).
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Candidate ε-optimal answer

Table: Empirical stopping time (± σ) on the hard instance for different
combinations of sampling rule and recommendation rule with K = {e1, e2}.

z∗(µt−1) zF (µt−1) zF (µt−1, Nt−1)

LεBAI
ε-TaS
Fixed

Uniform
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Candidate ε-optimal answer

Table: Empirical stopping time (± σ) on the hard instance for different
combinations of sampling rule and recommendation rule with K = {e1, e2}.

z∗(µt−1) zF (µt−1) zF (µt−1, Nt−1)

LεBAI 244 (±14) 242 (±13)
ε-TaS 235 (±13) 235 (±13)
Fixed 238 (±12) 238 (±12)

Uniform 284 (±16) 284 (±16)

Furthest and instantaneous furthest have almost identical performance.

Heuristic: z̃t = zt = zF (µt−1, Nt−1).
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Candidate ε-optimal answer

Table: Empirical stopping time (± σ) on the hard instance for different
combinations of sampling rule and recommendation rule with K = {e1, e2}.

z∗(µt−1) zF (µt−1) zF (µt−1, Nt−1)

LεBAI 264 (±11) 242 (±13)
ε-TaS 252 (±13) 235 (±13)
Fixed 256 (±12) 238 (±12)

Uniform 309 (±16) 284 (±16)

Greedy is sample-inefficient.
LεBAI has similar performance with ε-TaS and Fixed, and outperforms
Uniform.
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BAI algorithms

Figure: Empirical stopping time on the hard instance (K = Z).

B BAI algorithms are modified to use the same stopping rule.
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BAI algorithms

Figure: Empirical stopping time on the hard instance (K = Z).

LεBAI performs
slightly better than LinGame and
on par with LinGapE and XY-Adaptive.
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BAI algorithms

Figure: Empirical stopping time on the hard instance (K = Z).

Sample-efficient modification of BAI algorithms for ε-BAI: use the
instantaneous furthest answer instead of the greedy answer.
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Conclusion

Contributions:
1 Don’t choose greedily: aim at identifying the furthest answer !
2 LεBAI, asymptotically optimal and empirically competitive.

Open questions/problems:
Performance of ε-BAI algorithms on BAI tasks.
Efficient computation of the closest alternative when Z is large.
Finite-time lower bound for multiple-correct answer.
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Questions ?
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Towards explicit formulas

Lemma

WhenM = Rd and V †w is the Moore-Penrose pseudo-inverse of Vw,

2T add
ε (µ)−1 = max

z∈Zadd
ε (µ)

max
w∈4K

min
x∈Z\{z}

(ε+ 〈µ, z − x〉)2

‖z − x‖2
V †w

2Tmul
ε (µ)−1 = max

z∈Zmul
ε (µ)

max
w∈4K

min
x∈Z\{z}

〈µ, z − (1−ε)x〉2

‖z − (1−ε)x‖2
V †w

Tmul
ε (µ) = min

z∈Zmul
ε (µ)

T0(µ,Zzε )

where Zzε
def
= {z} ∪ {(1− ε)x : x ∈ Z \ {z}}
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Furthest answer

The ε-optimal answer for which its alternative is the easiest to differentiate
from thanks to an optimal allocation over arms wF (µ) ∈ 4K .

(zF (µ), wF (µ))
def
= argmax

(z,w)∈Zε(µ)×4K
inf
λ∈¬εz

1

2
‖µ− λ‖2Vw (5)

Assumption: the furthest answer for µ is unique, |zF (µ)| = 1.

Role in asymptotic optimality:

zF (µ) has to be identified, e.g. Tmul
ε (µ) = T0

(
µ,ZzF (µ)ε

)
where

Zzε = {z} ∪ {(1− ε)x : x ∈ Z \ {z}}
Analysis involves a geometric quantity linked to zF (µ)
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Algorithm 1: LεBAI
Input: History Ft, Z-oracle LZ and learner LK.
Output: Candidate ε-optimal answer ẑ.

1 Pull once each arm a ∈ K;
2 for t = n0 + 1, · · · do
3 Get zt = RECO;
4 If STOP(zt) then return zt;

5 Get
(
z̃t, w

LK
t

)
from LZ × LK ;

6 Let wt = 1
tK

1K +
(
1− 1

t

)
wL
K

t and update Wt = Wt−1 + wt ;
7 Closest alternative: λt ∈ argminλ∈¬εz̃t ‖µt−1 − λ‖2Vwt ;
8 Optimistic gains: ∀a ∈ K, Ua

t =
(
‖µt−1 − λt‖aaT +

√
cat−1

)2 ;
9 Feed LK with gain gt(w) = (1− 1

t
)〈w,Ut〉 ;

10 Pull at ∈ argmina∈KN
a
t−1 −W a

t , observe X
at
t ;

11 end

where cat−1 = min

{
f
(
s2
)
‖a‖2

V−1
Ns

, 4M2L2
K

}
, LK = maxa∈K ‖a‖2 and f(t) = 2β

(
t, t1/3

)
.
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Upper bound

Theorem
Let LK with sub-linear regret and LZ such that z̃s ∈ zF (µs−1) and
Assumption 1 holds true. When recommending the instantaneous furthest
answer zt = zF (µt−1, Nt−1) and stopping according to (3) with threshold
β(t, δ) as in (4) for the exploration bonus f(t) = 2β

(
t, t1/3

)
, LεBAI yields a

(ε, δ)-PAC and, for all µ ∈M such that |zF (µ)| = 1,

lim sup
δ→0

Eµ [τδ]
ln
(
1
δ

) ≤ Tε(µ)

Assumption
The Z-oracle LZ with z̃s ∈ zF (µs−1) satisfies that there exist (α0, C0) ∈ [0, 1)× R+ such that almost
surely, for all t > n0,
maxz∈Z

∑t
s=n0+1 infλ∈¬εz ‖µs−1 − λ‖2Vws

−
∑t
s=n0+1 infλ∈¬εz̃s ‖µs−1 − λ‖2Vws

≥ −C0tα0 .
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Proof scheme

Et =
{
∀s ≤ t : ‖µs − µ‖2VNs ≤ f(t)

}
(6)

Under Et, if the algorithm does not stop at time t+ 1, the
stopping-recommendation pair satisfies

2β(t, δ) ≥ max
z∈Z

inf
λ∈¬εz

‖µ− λ‖2VNt − o
(
t+ ln

(
1

δ

))
while the (anytime) sampling rule verifies

max
z∈Z

inf
λ∈¬εz

‖µ− λ‖2VNt ≥
t∑

s=n0+1

gs

(
wL
K

s

)
− o (t) ≥ 2tTε(µ)

−1 − o (t)

Using β(t, δ) = ln
(
1
δ

)
+ o

(
t+ ln

(
1
δ

))
(and other Lemmas) yields

lim sup
δ→0

Eµ [τδ]
ln (1/δ)

≤ Tε(µ)
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Key challenge in multiple correct answers

Difference:
BAI: µ ∈ ¬0z for all z 6= z∗(µ), hence infλ∈¬0z ‖µ− λ‖2w = 0 for all
w ∈ RK

+ .
ε-BAI: µ ∈ ¬εz for all z /∈ Zε(µ). Need to control those strictly
positive terms for ε-optimal answers that are different from the
(instantaneous) furthest answer, i.e. for all z ∈ Zε(µ) \ {zF (µ)}.

Consequences:
Assumption 1
Forced exploration
Requirement that (zt, z̃t) = (zF (µt−1, Nt−1), zF (µt−1))
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Additive furthest answer

Figure: Influence of ε on (a) the proportion of draws where zF (µ) 6= z∗(µ), (b)
the median (and first/third quartile), when zF (µ) 6= z∗(µ), of the ratio between
T add
ε (µ) and the value at z∗(µ), i.e. minw∈4K supλ∈¬addε z∗(µ)

1
2‖µ− λ‖

2
Vw

.

Marc Jourdan ε-BAI for Linear Bandits November 19, 2021 37 / 37



BAI algorithms (bis)

Table: Average number of pulls per arm and empirical stopping time (± σ) on the
hard instance (K = Z).

a1 a2 a3 a4 Total
LεBAI 71 155 17 3 246 (±13)

LinGame 74 153 36 8 271 (±12)
DKM 111 141 110 110 472 (±22)

LinGapE 44 198 1 1 245 (±16)
XY-Static 140 142 1 1 284 (±16)
XY-Adaptive 77 169 1 1 248 (±13)

Fixed 61 173 1 1 236 (±12)
Uniform 136 136 135 135 541 (±26)
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Random instances

Figure: Empirical stopping time (K = Z) for d ∈ {6, 12}.
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Original stopping rule of BAI algorithms

Table: Empirical stopping time (± σ) with their original stopping rule or with ours
(3) on the hard instance (K = Z).

LinGame LinGapE XY-Adaptive
Original 102613 (±15344) 146209 (±16429) 302417 (±29938)
Modified 271 (±41) 245 (±42) 248 (±37)
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Computational relaxations

Figure: Empirical stopping time on the hard instance (K = Z) for (a) the lazy and
sticky update, and different implementations of (b) the lazy scheme and (c) the
sticky scheme. “-S” denotes the sticky scheme and “-L” the lazy one. The
notations for implementations are: “-C” for the constant one with T0 = 10, “-G”
for the geometric one with (T0, γ) = (10, 0.2), “-D” for geometrically decreasing
one with (T0, γ) = (10, 0.2) and “-B” for the Bernoulli one with parameter p = 0.1.
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Tracking and forced exploration

Figure: Empirical stopping time on the hard instance (K = Z). “-D” denotes when
the D-Tracking is used instead of C-Tracking and “-NF” denotes the removal of
forced exploration.
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Drawings
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