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Motivation
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Motivation

Goal: Identify the item having the highest averaged return.

Applications:
A/B testing for online marketing,
phase II/III of clinical trials,
crop-management tasks.
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Statistical model

Frequent distributions: parametric, e.g. Bernoulli or Gaussian.

Applications:

✓ A/B testing for online marketing,

✓ phase II/III of clinical trials,

✗ crop-management tasks.

Nature is bounded:
☞ Bounded distributions
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Crop-management

Simulator of crop yield:
30 years of historical field data for
42 different plants and soil
conditions,
model complex biophysical
processes.

Case study:
maize fields with Sub-Saharan soil
conditions,
fixed fertilization policy,
identify the best planting date. Figure: Decision Support System

for Agrotechnology Transfer
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Section 2

Problem statement
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Stochastic multi-armed bandits

K arms, Fi cdf of arm i with mean m(Fi) := EX∼Fi
[X].

At time n, pull In ∈ [K] and observe Xn,In ∼ FIn.

Distributions F with set of possible means I:

bounded in [0, B],

sub-exponential single parameter exponential families (SPEF, e.g.
Bernoulli, Gaussian with known variance, etc).
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Best-arm identification (BAI)
Goal: identify the best arm i⋆ = argmaxim(Fi) with confidence δ.

sampling rule, In ∈ [K],

recommendation rule, ı̂n ∈ [K],

stopping rule, τδ.

Objective: Minimize EF [τδ] for δ-correct algorithms

PF [τδ < +∞, ı̂τδ ̸= i⋆] ≤ δ .

? What is the best one could achieve ? Agrawal et al. (2020)

☞ For all δ-correct algorithm, for all F ∈ FK ,

EF [τδ] ≥ T ⋆(F ) log (1/(2.4δ)) .
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Characteristic time

T ⋆(F )−1 := sup
w∈△K

min
i ̸=i⋆

inf
u∈I

{
wi⋆K−

inf(Fi⋆ , u) + wiK+
inf(Fi, u)

}
,

△K simplex, K±
inf(F, u) := inf {KL(F,G) | G ∈ F , m(G) ≷ u}.

? How can we reach the lower bound T ⋆(F ) ?

☞ Empirical sampling proportions converging towards maximizer.

Problem: learning the maximizer w⋆ ∈ △K can be difficult.

Observation: the allocation to the best arm has a central role.
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Asymptotic β-optimality

Sub-class of algorithms: β proportion of samples to the best arm.

? What is the best one could achieve ? Russo (2016)

☞ β-optimal: lim supδ→0 EF [τδ]/ log (1/δ) ≤ T ⋆
β (F ) where

T ⋆
β (F )−1 := sup

w∈△K ,wi⋆=β
min
i ̸=i⋆

inf
u∈I

{
βK−

inf(Fi⋆ , u) + wiK+
inf(Fi, u)

}
,

achieved for a unique β-optimal allocation wβ when i⋆ is unique.

? How does it relate to asymptotic optimality ?

☞ T ⋆(F ) = minβ∈(0,1) T
⋆
β (F ) and T ⋆

1/2(F ) ≤ 2T ⋆(F ).

Marc Jourdan Top Two Algorithms Revisited June 17, 2022 10 / 35



Asymptotic β-optimality

Sub-class of algorithms: β proportion of samples to the best arm.

? What is the best one could achieve ? Russo (2016)

☞ β-optimal: lim supδ→0 EF [τδ]/ log (1/δ) ≤ T ⋆
β (F ) where

T ⋆
β (F )−1 := sup

w∈△K ,wi⋆=β
min
i ̸=i⋆

inf
u∈I

{
βK−

inf(Fi⋆ , u) + wiK+
inf(Fi, u)

}
,

achieved for a unique β-optimal allocation wβ when i⋆ is unique.

? How does it relate to asymptotic optimality ?

☞ T ⋆(F ) = minβ∈(0,1) T
⋆
β (F ) and T ⋆

1/2(F ) ≤ 2T ⋆(F ).

Marc Jourdan Top Two Algorithms Revisited June 17, 2022 10 / 35



Contributions

1 Generic and modular analysis of Top Two algorithms.

2 Asymptotically β-optimal instances (bounded and SPEF).

3 Competitive performance on a real-world non-parametric task.
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Related work

Top Two (TT) algorithms for Gaussians:

Russo (2016), TTPS and TTTS (Probability/Thompson Sampling),

Qin et al. (2017), TTEI (Expected Improvement),

Shang et al. (2020), T3C (Transportation Cost).

Other BAI algorithms:

Kalyanakrishnan et al. (2012), (kl)-LUCB algorithm for bounded
distributions,

Agrawal et al. (2020), Track-and-Stop for heavy-tailed distributions,

Degenne et al. (2019), DKM for sub-Gaussian SPEF.
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Section 3

Top Two algorithms
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Stopping-recommendation pair
? Which arm should we recommend ?

ı̂n = argmax
i

µn,i with µn,i = m(Fn,i) ,

Nn,i =
∑

t∈[n] 1 (It = i) and Fn,i =
1

Nn,i

∑
t∈[n] δXt,It

1 (It = i).

? How to stop to obtain δ-correct algorithm ?

☞ calibrated GLR stopping rule

τδ = inf

{
n ∈ N | min

j ̸=ı̂n
Wn(̂ın, j) > β(n, δ)

}
, (1)

where the empirical transportation cost between arms (i, j) is

Wn(i, j) = inf
x∈I

[
Nn,iK−

inf(Fn,i, x) +Nn,jK+
inf(Fn,j, x)

]
.
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Sampling rule

? How should we pull arms with the β constraint ?

☞ Top Two sampling rule with fixed β !

1: Choose a leader Bn ∈ [K]
2: U ∼ U([0, 1])
3: if U < β then
4: In = Bn

5: else
6: Choose a challenger Cn ∈ [K] \ {Bn}
7: In = Cn

8: end if
9: Output: next arm to sample In
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Choices of leader

Empirical Best (EB), deterministic,

BEB
n ∈ argmax

i∈[K]

µn−1,i .

Thompson Sampling (TS), randomized with a sampler Πn on IK ,

BTS
n ∈ argmax

i∈[K]

θi where θ ∼ Πn−1 .
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Choices of challenger given leader Bn

Transportation Cost (TC), deterministic,

CTC
n ∈ argmin

j ̸=Bn

Wn−1(Bn, j) .

Transportation Cost Improved (TCI), deterministic,

CTCI
n ∈ argmin

j ̸=Bn

Wn−1(Bn, j) + logNn−1,j .

Re-Sampling (RS), randomized, repeat θ ∼ Πn−1 until

CRS
n ∈ argmax

i∈[K]

θi ̸∋ Bn .
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Novelties
Six instances denoted by β-[leader]-[challenger].

Literature:

TTTS and T3C corresponds to β-TS-RS and β-TS-TC.

β-optimality for Gaussian distributions.

Novelties:

Fully deterministic instances are possible with the EB leader.

The TCI challenger is more stable than the TC one by penalizing
over-sampled challengers.

Dirichlet sampler for BAI with bounded distributions.

Bounded distributions and SPEF of sub-exponential distributions.
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Section 4

Bounded distributions
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Deterministic instances

Threshold ensuring δ-correctness of the stopping rule (1)

β(n, δ) = log (1/δ) + 2 log (1 + n/2) + 2 + log(K − 1) . (2)

Computing transportation costs between arm i and arm j:

Nn,iK+
inf(Fn,i, x) = sup

λ∈[0,1]

∑
t∈[Nn,i]

log

(
1− λ

Xt,i − x

B − x

)
.
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Randomized instances

? How to design a sampler over (0, B)K ? Riou and Honda
(2020)

☞ Dirichlet sampler: Πn =×i∈[K]
Πn,i where Πn,i uses the empirical

cdf Fn,i augmented by {0, B}. The sampler Πn,i returns∑
t∈[Nn,i]

wtXt,i +BwNn,i+1 with w ∼ Dir(1Nn,i+2) .
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Sample complexity upper bound

Theorem

Combining the stopping rule (1) with threshold (2) and a Top Two
algorithm with β ∈ (0, 1), instantiated with any pair of leader/challenger
introduced above, yields a δ-correct algorithm which is asymptotically
β-optimal for all F ∈ FK with m(F ) ∈ (0, B)K and
∆min := mini ̸=j |m(Fi)−m(Fj)| > 0.

Distinct means:

Uncommon, used for sufficient exploration of Top Two algorithms.

Good empirical performance even when ∆min = 0.
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Comparing instances

Limitations:

For large n, the RS challenger is computationally costly and the TS
leader is expensive.

β-EB-TC is too greedy and lacks robustness for moderate regime.

Advantages:

The EB leader is computationally efficient and the TC(I) challengers
are not costlier than computing the stopping rule.

The TS leader and the TCI challenger foster implicit exploration.

Recommendations: β-EB-TCI and β-TS-TC.
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Section 5

Modular sample complexity analysis
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Reaching asymptotic β-optimality

? How can we reach asymptotic β-optimality ?

☞ Empirical proportions converging towards maximizer wβ.

Convergence time T ε
β defined as

T ε
β := inf

{
T ≥ 1 | ∀n ≥ T, max

i∈[K]

∣∣∣∣Nn,i

n
− wβ

i

∣∣∣∣ ≤ ε

}
.

For any sampling rule, there exists ε0(F ) > 0,

∀ε ∈ (0, ε0(F )], EF [T
ε
β ] < +∞ =⇒ lim sup

δ→0

EF [τδ]

log (1/δ)
≤ T ⋆

β (F ) .
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Proving EF [T
ε
β ] < +∞

❶ Sufficient exploration: for n large enough,

min
i∈[K]

Nn,i ≥
√
n/K .

☞ Combining properties of the leader and challenger.

❷ Convergence of Nn

n
towards wβ under sufficient exploration.

Let ψn,i := P|(n−1)[In = i] and Ψn,i :=
∑

t∈[n] ψt,i,

☞ (Nn,i −Ψn,i)/
√
n are sub-Gaussian random variables.
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Convergence towards wβ: leader’s property

ψn,i = βP|(n−1)[Bn = i]+(1−β)
∑
j ̸=i

P|(n−1)[Bn = j]P|(n−1)[Cn = i|Bn = j] .

For all M ∈ N,∣∣∣∣Ψn,i⋆

n
− β

∣∣∣∣ ≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt ̸= i⋆] .

Good leader: for n large enough,

P|n[Bn+1 ̸= i⋆] ≤ g(n) =+∞ o(n−α) .
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Convergence towards wβ: challenger’s property

ψn,i = βP|(n−1)[Bn = i]+(1−β)
∑
j ̸=i

P|(n−1)[Bn = j]P|(n−1)[Cn = i|Bn = j] .

For all M ∈ N and all i ̸= i⋆,

Ψn,i

n
≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt ̸= i⋆] +
1

n

n∑
t=M

P|(t−1)[Ct = i|Bt = i⋆] .

Good challenger: for n large enough and all i ̸= i⋆,

Ψn,i

n
≥ wβ

i + ε ⇒ P|n[Cn+1 = i|Bn+1 = i⋆] ≤ h(n) =+∞ o(n−α) ,
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Section 6

Experiments
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Experimental setup

Moderate regime, δ = 0.01. Top Two algorithms with β = 1
2
.

Examples:

Real-world non-parametric crop-management task,

Random Bernoulli instances.

Benchmarks:

KL-LUCB, “fixed” oracle and uniform sampling.

Heuristics: Kinf-DKM and Kinf-LUCB.
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Crop-management problem

DSSAT: yield (observation) depending on the planting date (arm).

Figure: Empirical stopping time (a) on scaled DSSAT instances with their
density and mean (b). Lower bound is T ⋆(F ) log(1/δ).
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Crop-management problem

Figure: Empirical stopping time on scaled DSSAT instances. Lower bound is
T ⋆(F ) log(1/δ). “stars” equal means.
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Random Bernoulli instances

Figure: Empirical stopping time on random Bernoulli instances with K = 10.
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Conclusion

Contributions:

1 Generic and modular analysis of Top Two algorithms.

2 Asymptotically β-optimal instances (bounded and SPEF).

3 Competitive performance on a real-world non-parametric task.

Future work and open problems:
Adaptive Top Two algorithms.
Guarantees when ∆min = 0.
Fixed-budget setting.
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Questions ?
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Appendix
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Distinct means

Figure: Empirical stopping time on Bernoulli instance µ = (0.5, 0.45, 0.45).
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RS challenger

Figure: Empirical stopping time on (a) scaled DSSAT instances with K = 6 and
(b) random Bernoulli instances with K = 10.
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Kinf-LUCB

∀i ̸= ı̂n, Un+1,i = max
{
u ∈ [µn,i, B] | Nn,iK+

inf(Fn,i, u) ≤ β(n, δ)
}
,

Ln+1,̂ın = min
{
u ∈ [0, µn,̂ın ] | Nn,̂ınK−

inf(Fn,̂ın , u) ≤ β(n, δ)
}
.

Sampling rule: Sample Bn = ı̂n and Cn ∈ argmaxi ̸=ı̂n Un+1,i

Stopping rule:

τδ = inf

{
n ∈ N | Ln+1,̂ın ≥ max

j ̸=ı̂n
Un+1,j

}
.
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Convergence implies optimality

EF [T
ε
β ] < +∞ =⇒ lim sup

δ→0

EF [τδ]

log (1/δ)
≤ T ⋆

β (F ) ,

Up to technicalities (Kinf continuity and second order terms), this
implication is shown by using that if τδ ≥ n, then

log (1/δ) ≈δ→0 β(n, δ) ≥ min
j ̸=ı̂n

Wn(̂ın, j) ≈n≥T ε
β
nT ⋆

β (F )−1 .

It holds for bounded distributions and SPEF of sub-exponential
distributions.
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Drawings
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