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Best Arm identification

Objective: Identify the arm with the highest mean a⋆ ≜ argmaxa∈[K ] µa

Privacy Concern: Rewards may reveal sensitive information about individuals
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Clinical trials

Objective: Find the most effective medicine between K candidates

Reward: r = 1 if the patient is cured, r = 0 if not cured

For each round t = 1, . . . ,
A new patient pt arrives
The agent chooses a medicine at ∈ [K ] based on the history
Ht−1 ≜ {a1, r1, . . . , at−1, rt−1}
The agent observes the reaction rt of patient pt to medicine at

If the agent decides to stop:
▶ The agent proposes a guess â of a⋆

▶ Stop

Privacy: A patient’s reaction to a medicine can reveal sensitive information
about their health conditions
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▶ Stop

Privacy: A patient’s reaction to a medicine can reveal sensitive information
about their health conditions

The complexity of DP-BAI 3



Differential Privacy Background

Intuition: Indistinguishability from the mass

Definition: [Dwork and Roth, 2014] A randomised algorithm A satisfies ϵ-DP
if for any two neighbouring datasets d and d ′ that differ only in one row, i.e
d ∼ d ′, and for all sets of output O ⊆ Range(A),

Pr[A(d) ∈ O] ≤ eϵ Pr [A (d ′) ∈ O]
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ϵ-global DP BAI
Definition: π satisfies ϵ-global DP, if ∀T ≥ 1, ∀dT ∼ d′T ,∀aT and â,

π(aT , â,T | dT ) ≤ eϵπ(aT , â,T | d′T ).
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Main Question and Contributions

Main Question: What is the cost of ϵ-global DP in BAI?

Contributions:
We provide a lower bound on the sample complexity of any δ-correct
ϵ-global DP BAI strategy
We design a near-optimal algorithm matching the sample complexity
lower bound, up to multiplicative constants
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Lower Bound
Our Results

Theorem: For any δ-correct ϵ-global DP BAI strategy, we have that

Eν [τ ] ≥ max

(
T ⋆
KL(ν),

1
6ϵT ⋆

TV(ν)

)
log(1/3δ),

where (T ⋆
d (ν))

−1 ≜ supω∈ΣK
infλ∈Alt(ν)

∑K
a=1 ωad(νa, λa),

and d is either KL or TV.

Properties: Let ∆a ≜ µ1 − µa be the gap between the means.
T ⋆
KL(ν) ≈

∑
a

1
∆2

a
[Garivier and Kaufmann, 2016] and T ⋆

TV(ν) ≈
∑

a
1
∆a

.

Pinsker: T ⋆
TV(ν) ≥

√
2T ⋆

KL(ν).
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Lower Bound
Discussion

Eν [τ ] ≥ max

(
T ⋆
KL(ν),

1
6ϵT ⋆

TV(ν)

)
log(1/3δ)

Two hardness regimes depending on ϵ and the environment ν:
Low-privacy regime: When ϵ >

T⋆
TV(ν)

6T⋆
KL(ν)

, the lower bound retrieves the
non-private T ⋆

KL(ν) lower bound and privacy can be achieved for free.

High-privacy regime: When ϵ <
T⋆

TV(ν)
6T⋆

KL(ν)
, the lower bound becomes

1
6ϵT ⋆

TV(ν) and ϵ-global DP δ-BAI requires more samples than
non-private ones.
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Algorithm Design
Top Two Algorithm

Intuition: The Top Two sampling rule consist of:
Choosing a leader Bn ∈ [K ]

Choosing a challenger Cn ∈ [K ] \ {Bn}
Sampling Bn with probability β, else sampling Cn

The recommendation rule: recommend the empirical best-arm

ân = argmax
a∈[K ]

µ̂n,a

The stopping rule is based on a calibrated GLR

τδ = inf{n | min
j ̸=ân

Wn(ân, j) > c(n, δ)} ,

where c(n, δ) is a calibrated threshold and Wn(i , j) is the empirical
transportation cost between arms (i , j).
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Algorithm Design
Private Top Two

To make the Top Two algorithm satisfy ϵ-global DP, we

Estimate the sequence of empirical means (µ̂a,n) privately, i.e.
(µ̃a,n) = (µ̂a,n) +

1
ϵLap, using

▶ Per-arm doubling
▶ Forgetting
▶ Adding calibrated Laplace noise

Count for the noise in:
▶ The sampling rule: leader and challenger based on the private (µ̃a,n)
▶ The recommendation rule: Recommend ân = argmaxa∈[K ] µ̃n,a
▶ The stopping rule: re-calibrate the GLR threshold

c̃(n, δ) = c(n, δ) + 1
ϵ
c2(n, δ)
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▶ The stopping rule: re-calibrate the GLR threshold

c̃(n, δ) = c(n, δ) + 1
ϵ
c2(n, δ)

The complexity of DP-BAI 10



Algorithm Design
Privacy and sample complexity

Theorem: For Bernoulli instances verifying that ∃C ≥ 1 such that
∆max/∆min ≤ C and β = 1/2, AdaP-TT is ϵ-global DP, δ-correct and satisfies

lim sup
δ→0

Eµ[τδ]

log(1/δ) ≤ c max
{

T ⋆
KL(µ),C

T ⋆
TV(µ)

ϵ

}
.

where c is a universal constant.

☞ Matches the lower bound up to constants
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Experimental Analysis
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Figure: Evolution of the stopping time τ of AdaP-TT, DP-SE, and TTUCB with
respect to the privacy budget ϵ for δ = 10−2 on two Bernoulli instances. The shaded
vertical line separates the two privacy regimes. AdaP-TT outperforms DP-SE.
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Conclusion and Future Work

Conclusion: We derive sample complexity lower bounds and matching upper
bounds for BAI with ϵ-global DP.

Future Work:
Close the multiplicative gap between the lower and upper bounds.

Extend the analysis to other DP settings, like (ϵ, δ)-DP and Rényi-DP.

Extend the analysis to other trust models, like local DP and shuffle DP.
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Thank you for your interest in the paper

Come see us at the poster session!
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