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Phase III clinical trials

µ1 µ2 µ3 µ4

Goal: Identify a treatment with a high efficiency.

Setting: Pure exploration for stochastic multi-armed bandits.

☞ Sequential hypothesis testing with adaptive data collection.
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Sequential decision making under uncertainty

After treating n− 1 patients, the physician has
☞ a guessed answer for a good treatment ı̂n ∈ [K] .

As the n-th patient enters, the physician selects
☞ a treatment In ∈ [K] for administration.

Then, it observes a realization Xn ∼ νIn with νi = B(µi) .

(̂ın)n>K · · ·

(In)n≥1 · · ·
(Xn)n≥1 · · ·
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Other applications

crop management for agriculture,

A/B testing for online marketing,

hyperparameter optimization.
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Key requirements of a good strategy

To be advocated by statisticians:
✓ guarantees on the quality of
the guessed answer,
✓ low empirical error quickly.

To be used by practitioners:
✓ simple,
✓ interpretable,
✓ generalizable,
✓ versatile.

The Top Two approach satisfies them all !
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The Top Two approach
Set a leader answer Bn ∈ [K] ;

Set a challenger answer Cn ∈ [K] \ {Bn} ;

Set a target βn(Bn, Cn) ∈ [0, 1] ;

Return In ∈ {Bn, Cn} using target βn(Bn, Cn) .

Answers Target
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Roadmap of this talk based on my PhD thesis

Chapter 2
Gaussian with

Known Variances

Chapter 3
Dealing with

Unknown Variances

Chapter 4
Beyond Parametric

Distributions

Chapter 5
Epsilon Best Arm Identification

Chapter 6
Good Arm Identification

Chapter 7
Choosing the

Furthest Answer

Chapter 8
Extending the

Top Two Approach
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Contributions featured in this talk

� MJ, Rémy Degenne, Dorian Baudry, Rianne de Heide and Émilie Kaufmann. Top
Two algorithms revisited.
Advances in Neural Information Processing Systems, 2022.

� MJ, Rémy Degenne and Émilie Kaufmann. Dealing with unknown variances in
best-arm identification.
Algorithmic Learning Theory, 2023.

� MJ and Rémy Degenne. Non-asymptotic analysis of a UCB-based Top Two
algorithm.
Advances in Neural Information Processing Systems, 2023.

� MJ, Rémy Degenne and Émilie Kaufmann. An ε-best-arm identification algorithm
for fixed-confidence and beyond.
Advances in Neural Information Processing Systems, 2023.
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Other contributions during my PhD thesis

� MJ and Rémy Degenne. Choosing answers in ε-best-answer identification for
linear bandits.
International Conference on Machine Learning, 2022.

� Achraf Azize, MJ, Aymen Al Marjani and Debabrota Basu. On the complexity of
differentially private best-arm identification with fixed confidence.
Advances in Neural Information Processing Systems, 2023.

3 MJ and Clémence Réda. An anytime algorithm for good arm identification.

3 Achraf Azize, MJ, Aymen Al Marjani and Debabrota Basu. Differentially private
best-arm identification.
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Stochastic multi-armed bandits

K arms: arm i ∈ [K] with νi ∈ D having mean µi .

Class of distributions D:

parametric, e.g. Bernoulli, Gaussian (known or unknown variance).

non-parametric, e.g. bounded distributions in [0, B] .

Underlying structure:

vanilla, µ = (µi)i∈[K] ∈ RK .

linear, µi = ⟨θ, ai⟩ where θ ∈ Rd is unknown and ai ∈ Rd is known.

Running example
Vanilla bandits for Gaussian with unit variance.
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ε-Best-Arm Identification ( ε-BAI )

Goal: identify one arm in Iε(µ) = {i | µi ≥ maxj µj − ε} with ε ≥ 0.

Algorithm: at time n ,

• Recommendation rule: recommend a candidate answer ı̂n .

• Stopping rule (optional): dictate when to stop sampling .

• Sampling rule: pull an arm In and observe Xn ∼ νIn .
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Performance metrics

Fixed-confidence: given an error/confidence pair (ε, δ) ,

☞ Define an (ε, δ)-PAC stopping time τε,δ , i.e.

Pν(τε,δ < +∞, ı̂τε,δ /∈ Iε(µ)) ≤ δ .

☞ Minimize the expected sample complexity Eν [τε,δ] .

Fixed-budget: given an error/budget pair (ε, T ) ,

☞ Minimize the probablity of ε-error Pν (̂ıT /∈ Iε(µ)) at time T .

Anytime: Control the simple regret Eν [maxj µj−µı̂n ] at any time n.
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Lower bound on the expected sample complexity
(Garivier and Kaufmann, 2016; Degenne and Koolen, 2019; Agrawal et al., 2020)

For all (ε, δ)-PAC algorithm and all instances ν ∈ DK ,

lim inf
δ→0

Eν [τε,δ]

log(1/δ)
≥ Tε(ν) ,

where the inverse of the characteristic time is

Tε(ν)
−1 = max

i∈Iε(µ)
max
w∈△K

min
j ̸=i

Cε(i, j; ν, w) ,

reached at the optimal allocation wε(ν) and furthest answer iF (ν).

Vanilla bandits for Gaussian with unit variance

Cε(i, j; ν, w) = 1 (µi > µj − ε)
(µi − µj + ε)2

2(1/wi + 1/wj)
.
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How to obtain an (ε, δ)-PAC algorithm ?
☞ recommend the empirical best arm

ı̂n = argmax
i∈[K]

µn,i ,

with µn,i = N−1
n,i

∑
t∈[n−1] 1 (It = i)Xt and Nn,i =

∑
t∈[n−1] 1 (It = i) .

☞ Generalized likelihood ratio (GLR) stopping rule

τε,δ = inf{n ∈ N | min
j ̸=ı̂n

Cε,n(̂ın, j) > c(n− 1, δ)} ,

with Cε,n(i, j) = Cε(i, j; νn, Nn) and c(n, δ) ≈ log(1/δ) +O(log n) .

Vanilla bandits for Gaussian with unit variance

Cε,n(i, j) = 1 (µn,i > µn,j − ε)
(µn,i − µn,j + ε)2

2(1/Nn,i + 1/Nn,j)
.
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Lower bound based sampling rules

Track-and-Stop (Garivier and Kaufmann, 2016) At n, solve wn = wε(νn) .

Online optimization approach:

DKM (Degenne et al., 2019),

FWS (Wang et al., 2021).

At n, get wn from learner LK ;
Feed loss ℓn(w) to learner LK .

Top Two approach:

LUCB (Kalyanakrishnan et al., 2012),

TTTS (Russo, 2016),

TTEI (Qin et al., 2017),

T3C (Shang et al., 2020).

At n, set leader answer Bn ;
Set challenger answer Cn ̸= Bn ;
Set target βn(Bn, Cn) ∈ [0, 1] ;
Set In ∈ {Bn, Cn} with βn(Bn, Cn).
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The greedy GLR-based sampling rule

At time n < τε,δ ,

candidate (or leader) answer, ı̂n = argmaxi∈[K] µn,i ,

alternative (or challenger) answer, ȷ̂n = argminj ̸=ı̂n Cε,n(̂ın, j) .

Since we don’t stop, i.e. Cε,n(̂ın, ȷ̂n) ≤ c(n− 1, δ) , we want to

☞ verify that ı̂n is better than ȷ̂n ,

☞ hence we sample In ∈ {ı̂n, ȷ̂n} .

△! When ε is small, this is too greedy in practice.

☞ Implicit exploration when selecting ı̂n or ȷ̂n .
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The Top Two approach
Set a leader answer Bn ∈ [K] ;

Set a challenger answer Cn ∈ [K] \ {Bn} ;

Set a target βn(Bn, Cn) ∈ [0, 1] ;

Return In ∈ {Bn, Cn} using target βn(Bn, Cn) .

Answers Target
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Leader answer Bn ∈ [K]

☞ Empirical Best (EB) (Jourdan et al., 2022), argmaxi∈[K] µn,i .

☞ Upper Confidence Bound (UCB) (Jourdan and Degenne, 2023),

argmax
i∈[K]

Un,i with Un,i = argmax {λ | Nn,iKL(µn,i, λ) ≲ log(n)} .

☞ Thompson Sampling (TS) (Russo, 2016),

argmax
i∈[K]

θn,i with θn ∼ Πn =
⊗
i∈[K]

Πn,i .

Vanilla bandits for Gaussian with unit variance

Un,i ≈ µn,i +
√

2 log(n)/Nn,i and Πn,i = N (µn,i, 1/Nn,i) .
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Challenger answer Cn ∈ [K] \ {Bn}

☞ Transportation Cost (TC) (Shang et al., 2020),

argmin
j ̸=Bn

Cε,n(Bn, j) .

☞ Transportation Cost Improved (TCI) (Jourdan et al., 2022),

argmin
j ̸=Bn

{Cε,n(Bn, j) + logNn,j} .

☞ Re-Sampling (RS) (Russo, 2016),

argmax
i∈[K]

θn,i with θn ∼ Πn until Bn /∈ Iε(θn) .
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Target allocation βn(Bn, Cn) ∈ [0, 1]

☞ Fixed design (Russo, 2016),

βn(i, j) = β ∈ (0, 1) .

☞ Optimal design IDS (Information Directed Selection) (You et al., 2023),

βn(i, j) =
Nn,i

Cε,n(i, j)

∂Cε

∂wi

(i, j; νn, Nn) ,

when µn,i > µn,j − ε , and βn(i, j) = 1/2 otherwise.

Vanilla bandits for Gaussian with unit variance

When µn,i > µn,j − ε, βn(i, j) = Nn,j/(Nn,i +Nn,j) .
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Reaching the target

☞ Randomized (Russo, 2016),

In =

{
Bn with probability βn(Bn, Cn) ,

Cn otherwise .

☞ Tracking (Jourdan and Degenne, 2023),

In =

{
Cn if NBn

n,Cn
≤ (1− βn+1(Bn, Cn))Tn+1(Bn, Cn) ,

Bn otherwise .

with N i
n,j =

∑
t∈[n−1] 1 ((Bt, Ct) = (i, j), It = j) , Tn(i, j) =

∑
t∈[n−1] 1 ((Bt, Ct) = (i, j)) and

βn(i, j) = Tn(i, j)−1
∑

t∈[n−1] βt(i, j)1 ((Bt, Ct) = (i, j)) .
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Asymptotic ( β-)optimality
Theorem (Jourdan et al. 2022; Jourdan and Degenne 2023; Jourdan et al. 2023a)

The Top Two sampling rule with any pair of leader/challenger satisfying some
properties yields an (ε, δ)-PAC algorithm and, for all ν ∈ DK with unique best
arm (and distinct means for ε = 0 ),

lim sup
δ→0

Eν [τε,δ]

log(1/δ)
≤

{
Tε(ν) [IDS]
Tε,β(ν) [fixed β]

with Tε,1/2(ν) ≤ 2Tε(ν) .

Distributions D IDS Fixed TS EB UCB RS TC TCI

Gaussian KV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Shang et al., 2020; You et al., 2023) YQWY23 SdHK+20 SdHK+20 JD+22 JD23 SdHK+20 SdHK+20 JD+22

Bernoulli ? ✓ ✓ ✓ ✓ ✓ ✓ ✓

sub-Exp 1-Exp.Fam. ? ✓ ? ✓ ✓ ? ✓ ✓

Gaussian UV ? ✓ ? ✓ ✓ ? ✓ ✓

Bounded ? ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Beyond Gaussian with unit variance
Empirical transportation cost for a class of distributions D ,

Cε,n(i, j) = 1 (µn,i > µn,j − ε) inf
u∈I

{
Nn,iK−

inf(νn,i, u− ε) +Nn,jK+
inf(νn,j, u)

}
,

where K+
inf(ν, u) = inf{KL(ν, κ) | κ ∈ D, EX∼κ[X] > u} .

☞ Gaussian with unknown variance,

K+
inf(νn,i, u) = 1 (µn,i < u)

1

2
log

(
1 +

(µn,i − u)2

σ2
n,i

)
,

where I = R and σ2
n,i = N−1

n,i

∑
t∈[n−1] 1 (It = i) (Xt − µn,i)

2 .

☞ Bounded distributions with known support I = [0, B] .
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Proof sketch

❶ Let Tγ such that maxi ̸=i⋆

∣∣∣ Nn,i

Nn,i⋆
− wε,i

wε,i⋆

∣∣∣ ≤ γ for all n ≥ Tγ .

log (1/δ) ≈δ→0 c(n, δ) ≥ min
j ̸=ı̂n

Cε,n(̂ın, j) ≈n≥Tγ nTε(ν)
−1 .

❷ Sufficient exploration, i.e. mini∈[K] Nn,i ≥
√

n/K for n large.

If there are undersampled arms, then either the leader or the challenger
is one of them. As it will be sampled, this yields a contradiction.

❸ Convergence towards wε(ν), i.e. Eν [Tγ] < +∞ for γ small.

If an arm overshoots the ratio of optimal allocation with i⋆, then it will not
be chosen as challenger. Therefore, the ratio will converge.
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The EB-TCε algorithm (Jourdan et al., 2023b)

Vanilla bandits for Gaussian distributions with unit variance

Input: slack ε > 0 , proportion β ∈ (0, 1) (only for fixed).

Set ı̂n ∈ argmaxi∈[K] µn,i ;
Set Bn = ı̂n ;
Set Cn ∈ argmini ̸=Bn

µn,Bn−µn,i+ε√
1/Nn,Bn+1/Nn,i

;

Set βn+1(Bn, Cn) with βn(i, j) =

{
β [fixed]

Nn,j

Nn,i+Nn,j
[IDS]

;

Set In =

{
Cn if NBn

n,Cn
≤ (1− βn+1(Bn, Cn))Tn+1(Bn, Cn) ,

Bn otherwise .

Output: next arm to sample In and next recommendation ı̂n .
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Expected sample complexity

Theorem (Jourdan et al. 2023b)

EB-TCε with IDS (resp. fixed β ) proportions is (ε, δ)-PAC and
asymptotically (resp. β-)optimal for ε-BAI on instances with unique
best arm.

On any instances, EB-TCε with fixed β = 1/2 satisfies that

Eν [τε,δ] ≤ inf
x∈[0,ε]

max {Tν,ε(δ, x) + 1, Sν,ε(x)}+ 2K2 , where

limδ→0
Tµ,ε(δ,0)

log(1/δ)
≤ 2|i⋆(µ)|Tε,1/2(ν), Sν,ε(ε/2) = O(K2|Iε/2(µ)|ε−2 log ε−1).
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Any time and uniform probability of ε-error

Theorem (Jourdan et al. 2023b)

EB-TCε with fixed β = 1/2 satisfies that, for all n > 5K2/2 and all ε̃ ≥ 0,

Pν (̂ın /∈ Iε̃(µ)) ≤ exp

(
−Θ

(
n

Hiµ(ε̃)(µ, ε)

))
,

where H1(µ, ε) = K(2∆−1
min + 3ε−1)2 and Hi(µ, ε) = Θ(K/∆−2

i+1) . Ordered
distinct mean gaps (∆i)i∈[Cµ] and iµ(ε̃) = i if ε̃ ∈ [∆i,∆i+1) .

Policy playing (̂ın)n>K :

☞ Anytime expected simple regret with exponential decay.
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Proof sketch

❶ For all δ ∈ (0, 1], let Tε̃(δ) and (En,δ)n such that maxn Pν(E∁
n,δ) ≤ δ and

{ı̂n /∈ Iε̃(µ)} ⊂ E∁
n,δ for all n > Tε̃(δ). Then,

Pν (̂ın /∈ Iε̃(µ)) ≤ inf{δ | n > Tε̃(δ)} .

❷ A necessary condition for error: undersampled arms still exist.

❸ If there are undersampled arms, there is an arm which is selected
either as leader or challenger and has a bounded selection count.

Key observation: The number of times one can increment
a bounded positive variable by one is also bounded.
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Crop-management task
Bounded instance with K = 4 at (ε, δ) = (0, 10−2), Top Two with fixed design β = 1/2

arm = planting date / observation = bounded yield

Figure: Empirical stopping time (a) on scaled DSSAT instances with their
density and mean (b). Lower bound is T0(ν) log(1/δ) .
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Empirical stopping time
Gaussian instances µi = 1− (i−1)α

(K−1)α for α = 0.6 with varying K at (ε, δ) = (10−1, 10−2)
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Empirical simple regret
Gaussian instance µ ∈ {0.6, 0.4}10 with |I0(µ)| = 2, EB-TCε uses (ε, β) = (0.1, 1/2)
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Transductive linear bandits

Mean vector θ ∈ Rd , set of arms A ⊆ Rd and answers Z ⊆ Rd .

Goal: Identify one answer in Zε(θ) = {z | ⟨θ, z⟩ ≥ maxx⟨θ, x⟩ − ε} .

Tε(ν)
−1 = max

z∈Zε(µ)
max
w∈△K

min
x̸=z

Cε(z, x; ν, w) .

Transductive linear bandits for Gaussian with unit variance

Cε(z, x; ν, w) = 1 (⟨θ, z − x⟩ > −ε)
(⟨θ, z − x⟩+ ε)2

2∥z − x∥2
V −1
w

,

with Vw =
∑

awaaa
T is the design matrix of the allocation w ∈ △K .
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The structured Top Two approach
Set a leader answer Bn ∈ Z ;

Set a challenger answer Cn ∈ Z \ {Bn} ;

Set a target βn(Bn, Cn) ∈ △K ;

Return In ∈ A using target βn(Bn, Cn) .

Answers Arms
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The LεTT algorithm
Subproblem: known θ and ε = 0, leader z⋆ = argmaxz∈Z⟨θ, z⟩.

Sequentially learned components (qn, wn) ∈ △Z−1 ×△K

☞ TC challenger, Frank-Wolfe step

Cn ∈ argmin
x̸=z⋆

C(x,wn) with C(x,w) =
⟨θ, z⋆ − x⟩2

2∥z⋆ − x∥2
V −1
w

.

☞ IDS target, normalized reweighted gradient step

βn(Cn) = wn ⊙∇wC(Cn, wn)/C(Cn, wn) .

Then, update
[
qn+1

wn+1

]
=
(
1− 1

n+1

) [ qn
wn

]
+ 1

n+1

[
1Cn

βn(Cn)

]
.

Open problem: Show the convergence towards a saddle point of

max
w∈△K

min
q∈△Z−1

⟨q, C(·, w)⟩ .
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Conclusion

The Top Two approach meets our requirements !

To be advocated by statisticians:
✓ guarantees on the quality of
the recommendation,
✓ empirically competitive.

To be used by practitioners:
✓ simple,
✓ interpretable,
✓ generalizable,
✓ versatile.

Perspectives:

structured Top Two approach,

anytime setting,

privacy, safety and fairness.
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