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Résumé

Dans les problèmes d’exploration pure pour les bandits stochastiques à bras multiples,
l’objectif est de répondre à des questions concernant un ensemble de distributions inconnues
(modélisant par exemple l’efficacité d’un traitement) à partir desquelles nous pouvons collecter
des échantillons (mesurer son effet), et de fournir ensuite des garanties sur la réponse proposée.
L’exemple archétypal est le problème de l’identification du meilleur bras, dans lequel l’agent
cherche à identifier le bras étant le plus efficace en moyenne.

Cette thèse s’intéresse à la classe des algorithmes Top Two, dans lesquels un leader est
opposé à un challenger, ce qui oriente les efforts d’échantillonnage ultérieurs pour valider
la supériorité du leader. Nous avons introduit une définition unifiée de l’approche Top Two,
mettant en avant quatre composants importants. Compte tenu de leur simplicité, de leur
interprétabilité, de leur généralisation et de leur polyvalence, les algorithmes Top Two sont
prometteurs pour être adoptés pour différentes applications. Cette thèse s’efforce d’établir
l’approche Top Two comme une méthodologie fondée sur des principes statistiques, offrant des
garanties théoriques quasiment optimales ainsi que des performances empiriques excellentes.

Nous abordons différentes formulations de bandits stochastiques à plusieurs bras, avec
des classes de distributions variées ou des hypothèses structurelles sur les moyennes. Nous
avons aussi étudié différents problèmes d’exploration pure, notamment l’identification du
meilleur bras ou d’un bras de qualité acceptable. La principale contribution de cette thèse
réside dans l’obtention de garanties théoriques pour l’approche Top Two avec plusieursmesures
de performance. Dans le cas où un niveau de confiance est donné, les algorithmes Top Two
collectent un nombre moyen d’échantillons qui est asymptotiquement optimal (lorsque le
niveau de confiance tend vers un). Par ailleurs, nous proposons un algorithme Top Two qui
offre à tout moment des garanties sur la probabilité de se tromper dans l’identification d’un
bras de qualité acceptable.

Mots-clefs : prise de décision séquentielle, problème de bandit à plusieurs bras, exploration
pure, identification du meilleur bras.



Abstract

In pure exploration problems for stochastic multi-armed bandits, the objective is to answer
inquiries regarding a set of unknown distributions (modeling for example the efficacy of a
treatment) from which we can collect samples (measure its effect), and subsequently provide
guarantees on the candidate answer. The archetypal example is the best arm identification
problem, in which the agent aims at identifying the arm with the highest mean.

This thesis delves into the class of Top Two algorithms, wherein a leader is pitted against a
challenger, directing subsequent sampling efforts to validate the superiority of the leader. We
introduce a unified definition of the Top Two approach, putting forward four key components.
Given their simplicity, interpretability, generalizability, and versatility, Top Two algorithms are
promising for widespread adoption among practitioners. This thesis endeavors to establish the
Top Two approach as a principled methodology offering nearly optimal theoretical guarantees
alongside state-of-the-art empirical performance.

We address several stochastic multi-armed bandits settings, such as various classes of
distributions or structural assumptions on the means. We also study different pure exploration
problems, including the identification of the best arm or one of acceptable quality. The principal
contribution of this thesis lies in establishing theoretical guarantees for the Top Two approach
across several performancemetrics. In the fixed-confidence setting, we prove thatmany TopTwo
algorithms have an asymptotically optimal expected sample complexity (number of collected
samples when the confidence level goes to one). In the anytime setting, we propose a Top Two
algorithm that has guarantees on the probability of misidentifying a good enough arm at any
time.

Keywords: sequential decision making, multi-armed bandits, pure exploration, best-arm
identification.
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Chapter 1

Introduction

This manuscript concludes my doctoral thesis which started in October 2021 and took place
in the Scool team, hosted by Inria and the CRIStAL computer science lab at the University of
Lille. I had the honor of being supervised by Dr. Emilie Kaufmann and Dr. Rémy Degenne.

After introducing the context of this thesis, we formally present the setting of pure explo-
ration problems in stochastic multi-armed bandits. Then, we give an overview of the main
contributions of this thesis, and how they fit into the existing (and vast) literature. While
the contributions presented in this thesis are theoretical, the considered questions have been
motivated by practical considerations.

Contents
1.1 Context and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Stochastic Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Pure Exploration Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Fixed-confidence Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Beyond the Fixed-confidence Setting . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Introduction

1.1 Context and Scope

The stochastic multi-armed bandit problem has a rich history, initially conceived as a simple
model for sequential clinical trials [Thompson, 1933, Robbins, 1952]. Imagine a clinical trial
where a physician seeks to evaluate the efficacy ofK potential treatments for a novel disease.
Each treatment i carries a certain probability µi of curing a patient upon administration.

µ1 µ2 µ3 µ4

In phase III of a clinical trial, a central question emerges: which treatment distribution
yields the highest efficiency, meaning has the largest mean µi? Various methodologies have
been explored to address this query, depending on the intricacies of data collection. Sequential
hypothesis testing deals with situations where samples are collected without explicit con-
trol [Chernoff, 1959, Robbins, 1952]. Experimental design endeavors to predetermine the
data collection scheme [Chaloner and Verdinelli, 1995, Pukelsheim, 2006]. In the multi-armed
bandit [Audibert et al., 2010, Jamieson and Nowak, 2014] and ranking and selection [Hong
et al., 2021] literature, an algorithm sequentially selects its sampling strategy based on past data.

As each patient enters the trial, the physician selects a treatment In ∈ [K] for administration,
as well as a treatment ı̂n ∈ [K] for recommendation since it is believed to be the best treatment.
The patient response to the treatment In , modeled as a binary random variable Xn,In drawn
from a Bernoulli distribution with mean µIn , guides subsequent decisions. The crux of the
matter lies in leveraging this feedback to craft a “good” allocation policy for future patients. The
policy’s nature depends on the physician’s objectives; in phase III trials, the goal is to identify
a viable treatment for large-scale production. Given the costs associated with clinical trials,
timely certainty regarding treatment efficacy is crucial. An “optimal” policy may thus prioritize
the swift identification of promising treatments, even at the expense of fewer patients cured
during the trial phase, hoping to accelerate the mass production of an efficacious treatment.

While clinical trials serve as a motivating example, the quest for identifying the most
efficient item permeates numerous domains. In the context of crop management for agriculture,
different fertilization policies (or planting dates) are applied to the fields to assess the yield
of the crop. In A/B testing for online marketing, several versions of the same webpage are
deployed to evaluate their conversion probability (e.g. buying products, spending time, etc). In
hyperparameter optimization, different hyperparameters are tested tomeasure the performance
of a model. In those domains, the random response observed when selecting an item (or arm)

2



1.1 Context and Scope

might not be binary, hence other classes of distributions will also be considered (e.g. bounded
distributions for crop management).

When identifying the most efficient item is too costly, the practitioner is often willing to
settle for a good enough itemwhose performance is close to the best one. For other applications,
the practitioner considers that an item is good enough when its average efficiency is above a
certain level. In outcome scoring from gene activity (transcriptomic) data (e.g. treatment of
encephalopathy of prematurity in infants), several protocols for the administration of stem
cells are tested and the goal is only to identify one protocol that yields a strong enough positive
effect on patients. Before testing the potency of a drug against other drugs, one should first
evaluate its toxicity. In a toxicity study, several criteria are evaluated, and the physician should
ensure that none of those toxicity levels are large enough.

Rather than focusing on individual applications, this thesis considers the mathematical
framework of pure exploration problems for stochastic multi-armed bandits. As statisticians,
we aim to design policies (or strategies) that simultaneously have good theoretical guarantees
and good empirical performance. To discern between strategies with comparable theoretical
and empirical merits, we must consider the end-user (i.e. the practitioner). Thus, we endeavor
to craft policies that are simple, interpretable, generalizable, and versatile. We believe that
those characteristics are key for a policy to become widely accepted and utilized.

Simple There is often a difference between the policy and the agent: the former suggests an
action and the latter can decide to perform it. Since rational agents will only follow a strategy
in which they believe, the policy should be simple for the practitioner to understand and
implement it (preferably efficiently). In this thesis, we assume implicitly that both notions are
the same, but in a real-world scenario, this is often not true.

Interpretable Transparency and accountability are paramount, especially in domains fraught
with ethical implications. Interpretability not only aids understanding but also justifies deci-
sions, which is crucial for gaining stakeholder trust and regulatory approval. For example, in
phase III of clinical trials, the treatment is administered to a patient in a pool of volunteers.
Interpretability is a requirement of health authorities and it is necessary to secure volunteers
since extrinsic motivation (e.g. sickness or money) might not outweigh the defiance towards a
black-box procedure. To address the ethical dilemma of curing fewer patients during the trials
to obtain a cure faster, the status (or purpose) of the allocated treatment should be made clear.
Either it is believed to be a good treatment or it is only administered to reduce uncertainty on
treatments that are believed to be sub-optimal.

3



Introduction

Generalizable Theoretical guarantees hinge on well-defined goals (e.g. identifying the best
item or a good enough one) and environmental assumptions (e.g. the class of distributions, or
the underlying structure). Yet, practitioners seek methodologies adaptable to varied scenarios,
removing the need to frequently learn a newmethodology. Therefore, the design approach that
led to the policy should be generalizable to cope with changes in the goals and assumptions
with limited modifications.

Versatile Constraints in decision-making scenarios can fluctuate unpredictably. Policies must
withstand such dynamism, offering guarantees that remain robust across changing contexts.
For example, a physician might decide to stop earlier (resp. continue) the ongoing experiments
due to insufficient (resp. additional) funding. Therefore, a policy should be versatile enough
to obtain guarantees that hold at any time.

The Top Two approach In essence, the Top Two approach is pitting a leader against a chal-
lenger, and guiding subsequent sampling to verify the leader’s superiority. This thesis endeav-
ors to demonstrate the efficacy of the Top Two approach. It is a principled methodology that
meets the four aforementioned criteria, offering near-optimal theoretical guarantees and good
empirical performance.

1.2 Stochastic Multi-Armed Bandits

We study the stochastic multi-armed bandit problem [Bubeck and Cesa-Bianchi, 2012, Lattimore
and Szepesvari, 2020], which allows us to reflect on fundamental information-utility trade-
offs involved in interactive sequential learning. Specifically, in a bandit model, an agent is
interacting with an environment composed of K ∈ N arms. Each arm i ∈ [K]1 is associated
with an unknown probability distribution over R denoted by νi ∈ P(R) and having a finite
mean µi = EX∼νi [X] . A bandit instance is uniquely characterized by its vector of distributions
ν = (νi)i∈[K] , which admits µ = (µi)i∈[K] as vector of means.

At each stage n ∈ N , the agent chooses an arm In ∈ [K] based on the samples previously
observed and receives a sample Xn,In , random variable with conditional distribution νIn

given In . It then proceeds to the next stage. An algorithm (or strategy) for the agent in this
interaction is specified by a sampling rule, a procedure that determines In based on previously
observed samples and some exogenous randomness. Formally, In is Fn-measurable with the
σ-algebra Fn := σ

(
U1, I1, X1,I1 , · · · , In−1, Xn−1,In−1 , Un

) , where Un ∼ U([0, 1]) materializes
the possible independent randomness used by the algorithm at time n . We call that σ-algebra
history before time n . The empirical allocation over arms is denoted byNn := (Nn,i)i∈[K] where

1[K] is a shorthand for {1, · · · K} .
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1.2 Stochastic Multi-Armed Bandits

Nn,i :=
∑

t∈[n−1] 1 (It = i) , andwe haveNn/(n−1) ∈ ΣK :=
{
w ∈ RK

+ | w ≥ 0,
∑

i∈[K]wi = 1
}

where ΣK denotes the probability simplex of dimensionK − 1 .
Depending on their objectives, agents should have different sampling strategies. In the

regret minimization problems [Auer et al., 2002], the agent aims at maximizing the reward
accumulated over time, or equivalently minimizing the regret. In the pure exploration prob-
lems [Even-Dar et al., 2002, Bubeck et al., 2009], the agent solely wants to answer a question
about the underlying distributions. The most well-studied pure exploration problem is best-
arm identification (BAI), in which the goal is to identify an arm with the largest mean Audibert
et al. [2010]. In this thesis, we focus solely on the pure exploration problems, for which we
provide more details in Section 1.3.

Class of distributions When modeling a bandit problem, one first needs to make an assump-
tion as regards the set of possible distributions D for the arms. The set of possible means is
denoted by I := {m(κ) | κ ∈ D}wherem(κ) := EX∼κ[X] . From the viewpoint of a practitioner,
D should be chosen as a simple set of distributions that provides a good approximation of the
real-world application. For example, parametric distributions are reasonable for applications
such as A/B testing [Kaufmann et al., 2014], but they are unrealistic in other fields such as
agriculture. From the perspective of a theoretician, the choice of D is guided by the type of
research directions. For example, Gaussian distributions are a natural first step to study a new
phenomenon or provide new guarantees for an algorithm. Hopefully, the insights gained will
then be generalized to wider classes of distributions.

In this thesis, we mostly use the set DNσ of Gaussian distributions with known variance
σ , and the set Dσ of σ-sub-Gaussian distributions. A distribution κ is σ-sub-Gaussian if it
satisfies EX∼κ[eλ(X−m(κ))] ≤ eσ2λ2/2 for all λ ∈ R . Most of the methods used to study DNσ

can be transferred for the analysis of the set Dexp of a one-parameter exponential family. This
thesis will present more challenging extensions with a two-parameters exponential family,
e.g. the set DN of Gaussian distributions with unknown variance (see Chapter 3), and a set of
non-parametric distributions, e.g. the set D[0,B] of bounded distributions, whose support lies in
[0, B] where B > 0 (see Chapter 4).

Other classes of non-parametric distributions could have been considered, e.g. heavy-tailed
distributions with an upper bound on a non-centered moment [Agrawal et al., 2020]. Classes of
shape-constrained distributions are also promising for future work, e.g. logarithmically concave
density functions.

Underlying structure To define a bandit problem, one also needs to make an assumption as
regards its underlying structure. By structure, we mean an encoding of some prior knowledge
on the vector of means µwhich should lie in a known subset S of the set IK of possible vectors
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of means. The choice of the structure should be made according to the same trade-off as for the
choice of the class of distributions, both for the practitioner and the theoretician.

In this thesis, we mostly study the vanilla (or unstructured) bandit problem in which the
means are independent, i.e. S = IK . Despite the “simplicity” of the vanilla bandits, there
are still many open problems that remain to be answered. Since the structure can create new
information-utility trade-offs, we also explore one structured bandit problem in Part III. In
the linear bandit problem, each arm is associated with a known context vector ai ∈ Rd and
has a mean which is a linear function of unknown vector θ ∈ M where M ⊆ Rd is a bounded
set, i.e. µi = ⟨ai, θ⟩ . In the linear setting, µ is fully characterized by the set of arms vector
A = {ai}i∈[K] and the regression parameter θ , i.e. S = {µ ∈ IK | ∃θ ∈ M,∀i ∈ [K], ⟨ai, θ⟩} .

Other structural assumptions have been studied in the literature: generalized linear bandits
[Filippi et al., 2010] such as logistic bandits [Jun et al., 2021], combinatorial bandits [Chen
et al., 2013], sparse bandits [Jamieson et al., 2015], spectral bandits [Kocák and Garivier, 2021],
unimodal bandits [Combes and Proutière, 2014, Trinh et al., 2020], Lipschitz [Magureanu et al.,
2014], partial monitoring [Audibert and Bubeck, 2010], etc.

1.3 Pure Exploration Problems

In pure exploration problems, the goal is to answer a question about the unknown environment
by interacting with the set ofK arms. In this thesis, we focus on questions whose answers are
a function of the unknown vector of means. However, similar questions could be formulated
on other functionals of the distribution [Wang et al., 2022], e.g. the conditional value at risk for
heavy-tailed distributions [Agrawal et al., 2021b].

Awide range of questions Two types of questions about µ have been studied in the literature,
either there is a unique correct answer or there are multiple correct answers. The set Z of
possible answers to a pure exploration problem can coincide with the set of arms, i.e. Z = [K]
, or have a more elaborate structure, e.g. answers can be subsets of arms (i.e. Z ⊆ 2[K] ). Its
cardinality is also assumed to be finite and we denote it by Z = |Z| .

The most studied topic in pure exploration is the best arm identification (BAI) problem,
which we tackle in Part I. In BAI, the agent aims at identifying an arm with the highest mean,
i.e. i⋆ ∈ i⋆(µ) = arg maxi∈[K] µi . In (exact) BAI, we consider S = {µ ∈ IK | |i⋆(µ)| = 1}
, hence there is a unique correct answer i⋆ and Z = [K] . In some applications such as
investigating treatment protocols, BAI requires too many samples for it to be useful in practice.
To avoid wasteful queries, practitioners might be interested in easier tasks that identify one
“good enough” option. We consider two relaxed identification problems that admit multiple
correct answers: epsilon best arm identification ( ε-BAI) and good arm identification (GAI).
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1.3 Pure Exploration Problems

In ε-BAI [Mannor and Tsitsiklis, 2004, Even-Dar et al., 2006, Garivier and Kaufmann, 2021],
which is the focus of Chapter 5, the agent is interested in an arm whose mean is ε-close to
the highest one µ⋆ := maxi∈[K] µi , i.e. i ∈ Iε(µ) := {i ∈ [K] | µi ≥ µ⋆ − ε} where ε ≥ 0
and S = IK . The larger ε is, the easier the task. In the multiplicative ε-BAI problem, the
means are non-negative, i.e. S = {µ ∈ IK | mini∈[K] µi ≥ 0} , and one aims at returning an
arm i ∈ Imul

ε (µ) := {i ∈ [K] | µi ≥ (1 − ε)µ⋆} where ε ∈ [0, 1) . The BAI setting is recovered
by taking ε = 0 and considering S = {µ ∈ IK | |i⋆(µ)| = 1} . In GAI, which we tackle in
Chapter 6, the agent wants to return an arm whose mean exceeds a given threshold γ if it exists,
i.e. i ∈ Ithr

γ (µ) := {i ∈ [K] | µi ≥ γ} where γ ∈ R , else return ∅ . In GAI, we have Z = [K] ∪ ∅ ,
and we consider S = {µ ∈ IK | mini∈[K] |µi − γ| > 0} .

Other pure exploration problems have been studied in the literature: thresholding ban-
dits [Locatelli et al., 2016, Cheshire et al., 2021, Ouhamma et al., 2021], Top-k identification
[Katz-Samuels and Scott, 2019, Réda et al., 2021, Tirinzoni and Degenne, 2022], Pareto set
identification [Auer et al., 2016, Kone et al., 2023, 2024], identifying the whole set Iε(µ) [Ma-
son et al., 2020, Marjani et al., 2022], best partition identification [Chen et al., 2017a, Juneja
and Krishnasamy, 2019, Kaufmann and Koolen, 2021], structured BAI [Huang et al., 2017],
Multi-Fidelity BAI [Poiani et al., 2022, 2024], etc.

Recommendation rule Since the goal of the agent is to answer a question, its strategy should
include a recommendation rule in addition to a sampling rule. At time n , the agent recommends a
candidate answer ı̂n based on the samples previously observed. The recommendation ı̂n is done
before pulling arm In , hence it is Fn-measurable. Depending on the metric of performance,
the recommendation rule can only be specified at a fixed time T or when a data-dependent
stopping condition is met.

Performance metrics There are several ways to evaluate the performance of an algorithm
on a pure exploration problem. While those metrics are a function of the candidate answer,
they inherently depend on the sampling rule due to the data dependency. The two major
theoretical frameworks are the fixed-confidence setting [Even-Dar et al., 2006, Jamieson and
Nowak, 2014, Garivier and Kaufmann, 2016], which is the main focus of this thesis, and the
fixed-budget setting [Audibert et al., 2010, Gabillon et al., 2012]. In the fixed-confidence setting,
the agent aims at minimizing the number of samples used to identify a correct answer with
confidence 1−δ ∈ (0, 1) . In the fixed-budget setting, the objective is to minimize the probability
of misidentifying a correct answer with a fixed number of samples T .

While the constraint on δ or T is supposed to be given, properly choosing it is challenging
for the practitioner since a “good” choice typically depends on unknown quantities. Moreover,
in medical applications such as clinical trials, the maximal budget is limited but might not be
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fixed beforehand. When the collected data shows sufficient evidence in favor of one answer, an
experiment is often stopped before the initial budget is reached, referred to as early stopping.
When additional sampling budgets have been obtained due to new funding, an experiment
can continue after the initial budget has been consumed, referred to as continuation. While
early stopping and continuation are common practices, both fixed-confidence and fixed-budget
settings fail to provide useful guarantees for them. Recently, the anytime setting has received
increased scrutiny as it fills this gap between theory and practice. In the anytime setting, the
agent aims at achieving a low probability of error at any deterministic time [Jun and Nowak,
2016, Zhao et al., 2023]. In this thesis, an anytime strategy should also have good guarantees
in the fixed-confidence setting. As such, an anytime strategy is versatile and can be used
both in fixed-confidence and fixed-budget settings without modification. When the candidate
answer has any time guarantees, the practitioners can use continuation or early stopping (when
combined with a stopping rule). The anytime setting is presented in more detail in Section 1.5,
as it will be the focus of Part II.

Instead of considering minimax guarantees (e.g.minimax optimality of uniform sampling
for the probability of error [Bubeck et al., 2011]), this thesis focuses on problem-dependent
guarantees on the considered metric of performance. The goal is to show that the strategy will
(optimally) adapt to the bandit instance ν . In a nutshell, the contributions of this thesis are to
derive upper bounds on the performance of algorithms, which are themselves designed by
studying the theoretical lower bound.

1.4 Fixed-confidence Setting

In the fixed-confidence setting, the agent is given a parameter δ ∈ (0, 1) . In addition to its
sampling and recommendation rule, the agent should define a stopping rule which is a stopping
time for the filtration (Fn)n∈N . Note that the recommendation needs only to be defined at the
stopping time in the fixed-confidence setting. The stopping time τδ is also called the sample
complexity of the algorithm. The main requirement that we impose on a fixed-confidence
identification strategy is to be δ-correct.2

Definition 1.1 (δ-correct). Given δ ∈ (0, 1) , we say that an algorithm is δ-correct on the problem
class DK with set of means S if its probability of stopping and not recommending a correct answer
is upper bounded by δ for all instances ν ∈ DK having mean µ ∈ S , i.e.

∀ν ∈ DK s.t. µ ∈ S, Pν({τδ < +∞} ∩ Eerr
µ (τδ)) ≤ δ , (1.1)

2A stronger definition of δ-correctness has also been studied by requiring the algorithm to stop almost surely.

8



1.4 Fixed-confidence Setting

where Eerr
µ (n) denotes the error event at time n , meaning that ı̂n is not a correct answer for µ .

Example 1.2. In ε-BAI, we have Eerr
µ (n) = {ı̂n /∈ Iε(µ)} where Iε(µ) = {i ∈ [K] | µi ≥ µ⋆ − ε}

. When ε > 0 , we will denote the stopping time by τε,δ , and use the term (ε, δ)-PAC (Probably
Approximately Correct) instead of δ-correct. In GAI, we have Eerr

µ (n) = {ı̂n ∈ {∅}∪([K]\Ithr
γ (µ))}

when Ithr
γ (µ) = {i ∈ [K] | µi ≥ γ} ≠ ∅ , otherwise Eerr

µ (n) = {ı̂n ̸= ∅} when Ithr
γ (µ) = ∅ .

Afixed-confidence identification strategy is judged based on its expected sample complexity
Eν [τδ] , i.e. the expected number of samples it needs to collect before it can stop and return a
correct answer with the required confidence. A “good” fixed-confidence algorithm should
minimize Eν [τδ] . Historically, the sample complexity of the first fixed-confidence algorithms
was upper bounded with high probability. While there is no high probability lower bound
on the sample complexity, the expected sample complexity admits one (see Section 1.4.1).
Upper and lower bounds on the expected sample complexity are more informative than high
probability bounds. However, they only provide partial information as regards the behavior
of the algorithm. For example, we are still lacking a good understanding of the right tail of
the distribution of the stopping time τδ . It is not clear how fast it can decay, both in terms of a
theoretical lower bound and an upper bound for an algorithm.

First, we detail the lower bound on the expected sample complexity of any δ-correct algo-
rithm (Section 1.4.1), which is known to be tight in the asymptotic regime of δ → 0 . Second,
we present the GLR (generalized likelihood ratio) stopping rule (Section 1.4.2), which en-
sures δ-correctness regardless of the sampling rule when used with a well-chosen threshold.
Finally, we review several approaches to define a sampling rule reaching the lower bound
asymptotically (Section 1.4.3).

1.4.1 Lower Bound on the Expected Sample Complexity

To be δ-correct onDK , an algorithmhas to be able to distinguish problems inDK which disagree
on one of their correct answers. Garivier and Kaufmann [2016] show that this requirement
leads to a problem-dependent lower bound on the expected sample complexity incurred by
a δ-correct algorithm on any instance, which is tight in the asymptotic regime of δ → 0 . The
lower bound is obtained by using properties of the Kullback-Leibler (KL) divergence and
change-of-distribution arguments for alternative bandit instances. Change-of-distribution
arguments were also used by previous (less tight) lower bounds on the expected sample
complexity [Mannor and Tsitsiklis, 2004, Kaufmann et al., 2016].
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Kullback-Leibler divergence For two probability distributions P and Q on the same mea-
surable space X , the KL divergence (or relative entropy) is KL(P,Q) := EX∼P

[
log dP

dQ(X)
]
,

when P ≪ Q , and +∞ otherwise. dP
dQ is the Radon–Nikodym derivative of Pwith respect to

Q . Given a distribution P(0) with cumulant generating function ϕ , defined on an interval Iϕ

, the one-parameter exponential families defined by P(0) is the set of distributions P(λ) with
density with respect to P(0) given by dP(λ)

dP(0) (x) = eλx−ϕ(λ) . For one-parameter exponential
families, dKL(x, y) denotes the KL divergence between the distributions having means (x, y)
. The KL divergence between two Bernoulli distributions (also known as binary relative en-
tropy) is denoted by kl , and satisfies kl(x, y) = x log(x/y) + (1 − x) log (1 − x)/(1 − y)) . The
data-processing inequality (or contraction of entropy) is a useful tool to derive lower bounds. It
states that KL(P,Q) ≥ KL(Pf ,Qf ) where f : X → Y is a measurable function and Pf is the
push-forward measure of P by f .

Change of distribution A change of distribution relates the probability of an event E under
two different probability distributions ν and κwith their log-likelihood ratio. Let

Ln(ν, κ) = log
ℓ(X1,I1 , · · · , Xn−1,In−1 ; ν)
ℓ(X1,I1 , · · · , Xn−1,In−1 ;κ) (1.2)

denote the log-likelihood ratio of the observations collected before time n (i.e. in the history Fn

). The data-processing inequality yields that, for any stopping time τ and any event E ∈ Fτ ,

Eν [Lτ (ν, κ)] = KL(νFτ , κFτ ) ≥ kl(Pν(E),Pκ(E)) , (1.3)

where Fn = (U1, I1, X1,I1 , · · · , In−1, Xn,In−1 , Un) is such that Fn = σ(Fn) . When there is
a unique correct answer, (1.3) is enough to obtain a lower bound on the expected sample
complexity. However, when there are multiple correct answers, a “lower level” change of
distribution is required [Garivier and Kaufmann, 2021, Degenne and Koolen, 2019]. It features
the right tail of the log-likelihood ratio instead of its expectation. Direct manipulations yield
that, for all x ∈ R , all time n ∈ N and all event E ∈ Fn ,

Pκ(E) ≥ e−x (Pν(E) − Pν(Ln(ν, κ) ≥ x)) . (1.4)

Both in (1.3) and (1.4), the event E is chosen such that it is controlled under both distributions,
likely for one and unlikely for the other. Therefore, we want to find an alternative bandit model
κ ∈ DK whose vector of mean λ ∈ S is close enough to µ but under which the algorithm
should behave differently since ν and κ are disagreeing on their correct answers. Empirically,
different behaviors are reflected by a large log-likelihood ratio. As the log-likelihood ratio is
linked to the empirical allocation Nn , those change-of-distribution arguments will translate
into constraints on the sample complexity.
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Alternative set Given an answer i ∈ Z , we define the alternative to i as the set ¬i of vectors of
means λ ∈ S such that i is not a correct answer for λ . When there is a unique correct answer,
the set Alt(ν) of alternative bandit instances to ν is defined as the set of bandit instances κ ∈ DK

such that the mean vectorm(κ) lies in the alternative to the correct answer associated with µ .

Example 1.3. For BAI, we have ¬i = {λ ∈ S | i /∈ i⋆(λ)} where X denotes the closure of X ,
hence Alt(ν) := {κ ∈ DK | m(κ) ∈ ¬i⋆} where i⋆ is the unique element of i⋆(µ) . In ε-BAI, we
have ¬εi = {λ ∈ S | i /∈ Iε(λ)} . In GAI, we have ¬i = {λ ∈ S | i /∈ Ithr

γ (λ)} when i ∈ [K] ,
otherwise ¬i = {λ ∈ S | i ̸= Ithr

γ (λ)} when i = ∅ .

Lower bound For simplicity of exposure and since it covers BAI, we first consider the case
where there is a unique correct answer. The following elegant information-theoretic proof of
Theorem 1.4 was given by Garivier et al. [2019].

Theorem 1.4 ([Garivier and Kaufmann, 2016, Agrawal et al., 2020]). An algorithm which is
δ-correct on all problems in DK satisfies that, for all ν ∈ DK with mean µ ∈ S ,

Eν [τδ] ≥ T ⋆(ν) log
( 1

2.4δ

)
, (1.5)

where T ⋆(ν) = minβ∈(0,1) T
⋆
β (ν) is a characteristic time whose inverse is defined as

T ⋆
β (ν)−1 := sup

w∈ΣK , wi⋆ =β
inf

κ∈Alt(ν)

∑
i∈[K]

wiKL(νi, κi) . (1.6)

Proof. When Pν(τδ < +∞) < 1 , we have Eν [τδ] = +∞ , hence any lower bound will hold.
In the following, we suppose that τδ < +∞ almost surely. Let δ ∈ (0, 1) , κ ∈ Alt(ν) and
Eδ = Eerr

µ (τδ) . Since answers are unique, being correct on instance κ implies that the algorithm
is not correct on the instance ν , i.e. Eerr

m(κ)(τδ)∁ ⊆ Eδ where X∁ denotes the complement of X .
This key argument does not hold when there are multiple correct answers. The δ-correctness
property yields that Pν(Eδ) ≤ δ and Pκ(Eδ) ≥ 1 − δ . Using (1.3) and Wald’s lemma, we obtain

∑
i∈[K]

Eν [Nn,i]KL(νi, κi) = Eν [Lτδ
(ν, κ)] ≥ kl(Pν(Eδ),Pκ(Eδ)) ≥ kl(δ, 1 − δ) ≥ log

( 1
2.4δ

)
,

where the last two inequalities use the monotonicity properties of kl and a known lower bound.
Then, we can normalize to factor Eν [τδ] in the r.h.s. of the above equation. Taking the infimum
over κ ∈ Alt(ν) and the supremum over w ∈ ΣK concludes the proof. ■
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The set w⋆(ν) (resp. w⋆
β(ν) ) of (resp. β-)optimal allocations is defined as the maximizer

of the outer supremum on ΣK which defines T ⋆(ν)−1 (resp. T ⋆
β (ν)−1 ). The inverse of the

characteristic time quantifies the dissimilarity between ν and the most confusing (or closest)
alternative bandit κ . The notion of dissimilarity is a reweighted summation of KL divergence,
and the reweighting is chosen to maximize the dissimilarity.

In the asymptotic regime where δ → 0 , the lower bound (1.5) is known to be tight
since it is achieved by several algorithms. An algorithm is said to be asymptotically opti-
mal (resp. β-optimal) on DK if this asymptotic lower bound is matched on all instances ν
, lim supδ→0 Eν [τδ]/ log(1/δ) ≤ T ⋆(ν) (resp. T ⋆

β (ν) ) for all ν ∈ DK with mean µ ∈ S . In
the non-asymptotic (or moderate confidence) regime where δ ∈ (0, 1) is not necessarily close
to 0, the lower bound (1.5) only provides part of the picture and additional lower bounds
have been derived to account for different phenomenon. For example, lower bounds of order∑K

i=1 ∆−2
i log log ∆−2

i (independent of δ , but with a stronger dependence in the gaps) were
derived [Jamieson et al., 2014, Chen et al., 2017b, Simchowitz et al., 2017, Chen et al., 2017c].
Deriving a tight lower bound in the non-asymptotic regime is one of the main open problems
in the field of fixed-confidence pure exploration.

When there are multiple correct answers, the analysis relies on (1.4) and is purely asymp-
totic. The asymptotic lower bound features a characteristic time which is similar to T ⋆(ν) , and
recovers it when there is a unique correct answer. While both characteristic times have a similar
interpretation, the most confusing alternative bandit κ is now concerning one of the multiple
correct answers. The set iF (ν) of furthest (or easiest-to-verify) answers is defined as the answers
that maximize the corresponding dissimilarity. For example, in ε-BAI, we have

lim inf
δ→0

Eν [τε,δ]
log(1/δ) ≥ Tε(ν) with Tε(ν)−1 := max

i∈Iε(µ)
sup

w∈ΣK

inf
κ∈DK ,m(κ)∈¬i

∑
i∈[K]

wiKL(νi, κi) ,

(1.7)
and iF (ν) is the maximizer of the outer maximization defining Tε(ν) . We refer the reader to
Appendix G.1 for an asymptotic proof in the multiple correct answer setting, which is based on
techniques developed by Degenne and Koolen [2019].

Illustrative example: BAI Characteristic times are ubiquitous in fixed-confidence pure explo-
ration since they are giving the full picture of the asymptotic regime. Therefore, they have been
extensively used as an inspiration for the design of an identification strategy. While the ideas
can often be transferred irrespective of the question of interest and the considered structure, we
will consider vanilla BAI as an illustrative example. To fully cover Part I, the set of distributions
could be either parametric (e.g.Gaussian with known or unknown variance) or non-parametric
(e.g. bounded distribution). Agrawal et al. [2020] was the first to study BAI for a class of
non-parametric distribution.
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Let w ∈ ΣK and i⋆ be the unique correct answer of ν , hence Alt(ν) =
⋃

i ̸=i⋆{κ ∈ DK |
m(κi) ≥ m(κi⋆)} . Leveraging the independence between the means (i.e. S = IK ), we have

inf
κ∈Alt(ν)

∑
i∈[K]

wiKL(νi, κi) = min
i ̸=i⋆

inf
κ∈D2,m(κi)≥m(κi⋆ )

{wi⋆KL(νi⋆ , κi⋆) + wiKL(νi, κi)}

= min
i ̸=i⋆

inf
u≥v

{
wi⋆K−

inf(νi⋆ , v) + wiK+
inf(νi, u)

}
,

The last equality is obtained by re-parametrizing with means and taking the infimum over
distributions satisfying the mean constraint, hence it involves the function Kinf which is defined
as an infimum over KL divergence

K+
inf(ν, u) := inf{KL(ν, κ) | κ ∈ D, m(κ) > u} (1.8)

and K−
inf(ν, u) := inf{KL(ν, κ) | κ ∈ D, m(κ) < u} .

For one-parameter exponential families, we have K+
inf(ν, u) = dKL(m(ν),max{m(ν), u}) and

K−
inf(ν, u) = dKL(m(ν),min{m(ν), u}) . Depending on the class of distribution considered and

potentially additional constraints, Kinf enjoys useful properties such as strong duality, mono-
tonicity, and strict convexity for its second argument. A detailed description of the assumptions
under which those properties hold is beyond the scope of this manuscript. Nonetheless, the
reader can be reassured that they hold for all the distributions considered in Part I. Using
monotonicity properties of Kinf , we have

inf
κ∈Alt(ν)

∑
i∈[K]

wiKL(νi, κi) = min
i ̸=i⋆

inf
u∈I

{
wi⋆K−

inf(νi⋆ , u) + wiK+
inf(νi, u)

}
,

where the infimum over I could be restricted to [µi, µi⋆ ] . Let

C(i, j; ν, w) = 1 (µi > µj) inf
u∈I

{
wiK−

inf(νi, u) + wjK+
inf(νj , u)

}
(1.9)

be the transportation cost between answer i and answer j with respect to the allocation w for the
bandit instance ν . Intuitively, C(i, j; ν, w) represents how far ν is from a distribution where
arm j has a higher mean than arm i given allocation w . Putting things together, we have that

T ⋆(ν)−1 = sup
w∈ΣK

min
i ̸=i⋆

C(i⋆, i; ν, w) .

Depending on the class of distribution considered, the characteristic times satisfy strong reg-
ularity properties that are useful to study algorithms inspired by this lower bound, e.g. see
Lemma 2.10. Interestingly, the optimization problem defining T ⋆(ν)−1 can be rewritten as a
simpler optimization problem that can be approximately solved with nested binary searches.
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When there is additional structure (e.g. linear bandit), C(i, j; ν, w) will depend on (ν, w)
as a whole instead of simply depending on (µi, µj , wi, wj) . Moreover, it will not be possible
to use the quantities K±

inf since the structural dependence between the distributions prevents
optimizing the distributions at the level of the arms.

When there are multiple correct answers, the transportation cost should be also adapted to
the question of interest. For example, in vanilla ε-BAI, we have

Tε(ν)−1 = max
i∈Iε(µ)

sup
w∈ΣK

min
j ̸=i

Cε(i, j; ν, w) ,

where Cε(i, j; ν, w) = 1 (µi > µj − ε) infu∈I
{
wiK−

inf(νi, u− ε) + wjK+
inf(νj , u)

}
.

1.4.2 The GLR Stopping Rule

Before designing a sampling rule that matches the asymptotic lower bound presented in Sec-
tion 1.4.1, one should specify a stopping rule. Given observations collected before time n , an
algorithm can stop as soon as it has collected enough statistical evidence that its recommenda-
tion is a correct answer with probability at least 1 − δ . This problem can be seen as an adaptive
hypothesis testing problem regardless of the sampling rule considered. The sampling rule
collects data sequentially by adapting to past observations. Sequential hypothesis testing refers
to the setting where the sampling rule follows a sequential allocation fixed beforehand. It has
been studied for several decades, e.g. Wald [1945] for two simple hypothesis, Robbins and
Siegmund [1974] and Lai [1988] for composite hypothesis.

Estimator Let νn be the empirical vector of distributions associated with the empirical estima-
tor of the vector of means µn which maximizes the likelihood, i.e.

νn ∈ arg max
κ∈DK , m(κ)∈S

ℓ(X1,I1 , · · · , Xn−1,In−1 ;κ) .

We have µn,i = N−1
n,i

∑
t∈[n−1] 1 (It = i)Xt,i for all i ∈ [K] when there is no structure. For

a parametric distribution, νn is the parametric distribution associated with the maximum
likelihood estimator (MLE) of the parameters uniquely characterizing the distribution. For
non-parametric distribution (and without structure), νn is the vector of empirical distributions
of the arms, i.e. νn,i = N−1

n,i

∑
t∈[n−1] 1 (It = i) δXt,i where δx is the Dirac mass at x . While we

have νn ∈ DK when D = D[0,B] , there are classes of non-parametric distributions such that νn

does not even belong to DK .

Parallel tests Weuse the generalized likelihood ratio (GLR) stopping rule, as done extensively
in the literature. The GLR stopping rule was first proposed in Garivier and Kaufmann [2016],
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1.4 Fixed-confidence Setting

then popularized by subsequent works [Kaufmann, 2020]. The idea is to run Z sequential
tests in parallel. Given an answer i ∈ Z , we consider the GLR test for the following two
non-overlapping hypotheses H0,i : (µ ∈ ¬i) against H1,i : (µ ∈ S \ ¬i) , and denote the
GLR statistic of answer i at time n by GLRn(¬i) = infκ∈DK , m(κ)∈¬i Ln(νn, κ) where Ln(ν, κ)
as in (1.2). Importantly, a high value of GLRn(¬i) indicates that we should reject H0,i . Let
iF (νn, Nn) be the set of instantaneous furthest (or instantaneous easiest-to-verify) answers which
maximizes the GLR, i.e. iF (νn, Nn) = arg maxi∈Z GLRn(¬i) . When we need to recommend an
answer at any time n , it is natural to recommend ı̂n ∈ iF (νn, Nn) since this is the answer for
which we have collected the most evidence that it is correct. The GLR stopping rule stops as
soon as one of these tests can reject the null hypothesis. In other words, it stops as soon as the
GLR statistic exceeds a given stopping threshold c : N × (0, 1) → R+ ,

τδ = inf
{
n | max

i∈Z
GLRn(¬i) > c(n− 1, δ)

}
, (1.10)

and recommend ı̂τδ
∈ arg maxi∈Z GLRτδ

(¬i) since µ is believed to admit ı̂τδ
as a correct answer.

When there are multiple correct answers, other tests could have rejected the null hypothesis if
provided with more samples, i.e. several answers could satisfy that GLRn(¬i) > c(n− 1, δ) if
we don’t stop.

Regardless of the sampling rule, the stopping threshold c(n, δ) is chosen to ensure δ-correct
by using time-uniform concentration results. Namely, it is such that the probability that there
exists a time n such that GLRn(¬ı̂n) ≥ c(n− 1, δ) and ı̂n is not correct is upper bounded by δ
. While its exact formula depends on the considered class of distribution, the δ-dependency
should be such that limδ→0 c(n, δ)/ log(1/δ) = 1 , otherwise the algorithm is prohibited from
being asymptotically optimal. The asymptotic behavior as regards the n-dependency depends
on the considered class of distributions. While c(n, δ) =n→+∞ O(log logn) for the parametric
distributions considered in this thesis, the known thresholds for non-parametric distributions
only satisfy c(n, δ) =n→+∞ O(logn) . It is still an open problem to know whether it is possible
to achieve a scaling in O(log logn) for non-parametric distributions. Empirically, the known
stopping thresholds have been observed to be conservative since the empirical error rates are
orders of magnitude below the tolerated error of δ . Avoiding this bottleneck on the expected
sample complexity is also an open problem, e.g. one could use a tighter stopping threshold or a
different stopping rule.

Contribution 1.1. In Section 3.3 of Chapter 3, we present several ways to define a threshold for
Gaussian with unknown variance, and derive one which scales as O(log logn) when n → +∞ . In
Lemma 4.2 in Chapter 4, we propose a threshold for bounded distributions which scales as O(logn)
when n → +∞ . In both cases, our thresholds ensure δ-correctness for the corresponding class of
distributions and satisfy that limδ→0 c(n, δ)/ log(1/δ) = 1 , hence reaching asymptotic optimality.

15



Introduction

When the stopping condition is not met, the sampling rule will return an arm In to be
pulled next and we will update our belief based on this new observation. While examples of
sampling rules will be detailed in Section 1.4.3, we understand what a good sampling rule
should do. Since we want to stop as soon as possible, we should gather more evidence to verify
that ı̂n ∈ iF (νn, Nn) is a correct answer. Since this is the answer for which we have the most
evidence that it is correct, it is likely to be the easiest to verify with additional observations.

Contribution 1.2. In Chapter 7, the easiest-to-verify candidate answer is fundamental to reach
asymptotic optimality. For ε-BAI in transductive linear bandits, we show how to use this concept in
the GLR stopping rule (Section 7.3), as well as in the sampling rule (Section 7.4).

Illustrative example: BAI The GLR statistic of answer i at time n can be written as

GLRn(¬i) = min
j ̸=i

Wn(i, j) with Wn(i, j) = C(i, j; νn, Nn) ,

where Wn(i, j) denotes the empirical transportation cost between answer i and answer j .
It represents the amount of evidence we have collected so far to reject the hypothesis that
arm j has a higher mean than arm i . Moreover, we have iF (νn, Nn) = i⋆(µn) , hence we are
recommending the empirical best (EB) arm ı̂n ∈ i⋆(µn) .

To better understand how to choose c(n, δ) , one can rewrite the error event as

{τδ < +∞} ∩ Eerr
µ (τδ) =

⋃
n∈N

⋃
i ̸=i⋆

{i ∈ i⋆(µn), min
j ̸=i

C(i, j; νn, Nn) > c(n− 1, δ)}

⊆
⋃

n∈N

⋃
i ̸=i⋆

{Nn,iK−
inf(νn,i, µi) +Nn,i⋆K+

inf(νn,i⋆ , µi⋆) > c(n− 1, δ)} .

Therefore, the stopping threshold is chosen to control a reweighted random deviation between
the empirical distributions νn of the arms and their true mean µ .

Both for additional structure (e.g. linear bandit) and multiple correct answers, the story
is similar as in Section 1.4.1 since Wn(i, j) is an empirical version of the transportation cost
C(i, j; ν, w) . For example, in vanilla ε-BAI, we have

GLRn(¬εi) = min
j ̸=i

Wε,n(i, j) with Wε,n(i, j) = Cε(i, j; νn, Nn) ,

hence iF (ν, w) = arg maxi∈Iε(µ)Cε(i, j; ν, w) .

Influence of the sampling Rule Importantly, one can notice that the GLR statistic is an
empirical version of the inverse of the characteristic time T ⋆(ν) , where ν is replaced by νn and
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1.4 Fixed-confidence Setting

the outer optimization over ΣK is replaced by an evaluation at Nn , i.e.

T ⋆(ν)−1 = max
w∈ΣK

min
j ̸=i⋆

C(i⋆, j; ν, w) and GLRn(¬i) = min
j ̸=i

C(i, j; νn, Nn) .

Letw ∈ Σ̊K where X̊ denotes the interior of the setX . This allows us to understandwhatwill be
the asymptotic behavior of an algorithm whose empirical allocation is close to w asymptotically,
i.e. ∥Nn/n− w∥∞ ≈n→+∞ 0 for n large enough. For a minute, let’s assume we have access to
such a sampling rule. Then, for n large enough such that n < τδ , we will have ı̂n = i⋆ and

nmin
i ̸=i⋆

C(i⋆, i; ν, w) + o(n) =
n→+∞

min
j ̸=i

Wn(i, j) ≤ c(n, δ) =
δ→0,n→+∞

log(1/δ) + o(n+ log(1/δ)) .

Therefore, we now have a sufficient property for a sampling rule to be asymptotically optimal:
the empirical allocation should be close to w⋆(ν) , i.e. infw∈w⋆(ν) ∥Nn/n− w∥∞ ≈ 0 for n large
enough. For such a sampling rule, we obtain τδ ≲ T ⋆(ν) log(1/δ) which will yield asymptotic
optimality. This argument is formalized in Section 2.3.2.

Other stopping rules While (1.10) is the most common form of GLR stopping rule, one can
also leverage the fact that solving ε-BAI can be done by comparing pairs of arms, i.e.

τε,δ = inf {n | ∃i ∈ [K], ∀j ∈ [K] \ {i}, Wε,n(i, j) > ci,j(Nn, δ)} , (1.11)

where ci,j : NK × (0, 1) → R+ is a stopping threshold for the pair of arms (i, j) . In Chapter 3,
we use this expression of the GLR stopping rule. While this form of stopping time is often
provably smaller than (1.10), our experiments suggest that the expected sample complexities
are similar when paired with a good sampling rule.

While theGLR stopping rule has been extensively used for fixed-confidence pure exploration
problems in recent years, it is not yet the most used stopping rule. The two most studied
alternative stopping rules are the elimination-based one and the confidence-based one. The
elimination-based stopping rule stops when there is only one active answer left [Even-Dar et al.,
2006, Karnin et al., 2013]. The set of active answers is shrinking at the end of each phase (whose
length is increasing), and answers that have poor empirical mean compared to the empirical
best one are eliminated. The confidence-based stopping rule used stops when the LCB (Lower
Confidence Bound) of the candidate answer is not εworse than the UCB (Upper Confidence
Bound) of all the alternative answers. For Gaussian distributions with known variance, the
main difference between the confidence-based stopping rule and the GLR stopping rule lies in
the concentration results that are used. While the latter considers the mean gaps directly, the
former relies on per-arm concentration, hence will be sub-optimal in the δ-dependency (e.g. see
Chapter 3). It is easy to show that the GLR stopping rule is equivalent to a confidence-based
stopping rule when the same concentration results on the mean gap are used.
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1.4.3 Lower Bound Based Algorithms

The sampling rule is the last component to be defined to fully specify a fixed-confidence pure
exploration strategy. Since the GLR stopping rule ensures δ-correctness of the algorithm, the
sampling rule should be designed to stop as soon as possible, i.e.minimize the expected sample
complexity. For the sake of space, we will only present three types of sampling rules which are
all inspired by the lower bound: Track-and-Stop, an online optimization-based approach, and
the Top Two approach. While those approaches have been generalized to other settings, they
have been introduced to tackle vanilla BAI for parametric distributions, as we will do below.

While all those algorithms aim at obtaining an empirical allocation that is close to w⋆(ν) ,
they differ in the considered strategies. The Track-and-Stop algorithm has a high-level approach
that computesw⋆(νn) at each time n , then forces the empirical counts to be close to∑t∈[n]w

⋆(νt)
by using tracking. The online optimization-based algorithms view T ⋆(ν)−1 as an optimization
problem, and they learn w⋆(ν) sequentially with online optimization algorithms. A Top Two
sampling rule for bandit identification is a method that selects the next arm to sample from
among two candidate arms, a leader and a challenger. In light of our recent works, the Top
Two approach can be seen as a low-level approach that aims at increasing GLRn(¬ı̂n) the most.
Historically, it is interesting to notice that the first papers on Track-and-Stop and the Top Two
approach were both published at the 29th Annual Conference on Learning Theory (COLT
2016).

Track-and-Stop

The Track-and-Stop approach [Garivier and Kaufmann, 2016] appeared as an algorithmic
by-product of the theoretical lower bound on the expected sample complexity of any δ-correct
algorithm.

At each time n , Track-and-Stop solves the optimization problem defining the characteristic
time of the empirical estimator νn of the distributions, i.e. it computes wn = w⋆(νn) . Given
the vector wn ∈ ΣK , it uses a so-called tracking procedure to obtain an arm In to sample.
We describe and use the one called C-Tracking by Garivier and Kaufmann [2016]. On top
of this tracking, a forced exploration is used to enforce that all arms are sampled. This is
done here by projecting on Σε

K = {w ∈ [ε, 1]K |
∑

i∈[K]wi = 1} for a well chosen ε ∈ (0, 1/K]
. Defining wεn

n the ℓ∞ projection of wn on Σεn
K with εn = (K2 + n)−1/2/2 , C-Tracking pulls

In ∈ arg maxi∈[K]{
∑

t∈[n]w
εt
t,i −Nn,i} .

The forced exploration ensures that each arm is sampled enough for νn to converge towards
ν . Using arguments of continuity, we obtain that wn converge towards w⋆(ν) , hence Nn/n

does too by tracking properties. Therefore, as detailed in Section 1.4.2, the Track-and-Stop
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1.4 Fixed-confidence Setting

algorithm can be shown to be asymptotically optimal when combined with the GLR stopping
rule.

Since it requires solving a difficult optimization problem, the computational cost of Track-
and-Stop algorithm is several orders of magnitude larger than previous algorithms, e.g. LUCB
which is based on confidence intervals [Kalyanakrishnan et al., 2012]. Finding alternative
approaches to Track-and-Stop that are asymptotically optimal without the need to compute the
optimal proportion in every round was an active line of research that has been addressed in
recent years with the Top Two approach and the game-based approach (among others).

Contribution 1.3. In Section 3.4 of Chapter 3, we study the Track-and-Stop approach in vanilla
bandits for Gaussian distributions with unknown variance and show its asymptotic optimality.

Variants of Track-and-Stop have also been analyzed. The EBS (Exploration-Biased Weights)
algorithm [Barrier et al., 2022] computes the optimal allocation for a modified mean parameter.
The intuition is to wrap the optimal weight vector from above, by ensuring that its minimal
value is never underestimated.

Online Optimization Based Approach

The online optimization approach aims at solving the lower bound with generic optimization
techniques, i.e.

sup
w∈ΣK

F (w, ν) with F (w, ν) = inf
κ∈Alt(ν)

∑
i∈[K]

wiKL(νi, κi) ,

wherew → F (w, ν) is concave (but not necessarily smooth) and admits sub-gradients. Ménard
[2019] replaced the oracle call from Track-and-Stop with a one-step lazy mirror descent in
each round of the algorithm. Then, Ménard [2019] uses a tracking procedure that mixes the
target allocation with the uniform distribution to ensure forced exploration. Instead of using
lazy mirror descent, the FWS (Frank-Wolfe Sampling) algorithm [Wang et al., 2021] uses an
adapted Frank-Wolfe step at each round to update the target to be tracked and adds forced
exploration.

The game-based approach [Degenne et al., 2019] came from the interpretation of the lower
bound as the solution of a two-player game. The quantity

sup
w∈ΣK

inf
κ∈Alt(ν)

∑
i∈[K]

wiKL(νi, κi)

is viewed as the value of a min-max game between the agent that chooses arms based on an
allocation w ∈ ΣK and the nature that plays an alternative vector of distributions κ ∈ Alt(ν)
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. The game-based approach plays two no-regret learning algorithms against each other and
uses optimism on the payoffs to remove the need for forced exploration. Since the resulting
saddle-point algorithm approximates T ⋆(ν)−1 , it can be shown to be asymptotically optimal.

Contribution 1.4. In Section 7.4 of Chapter 7, we propose a LεBAI, which is a game based algorithm,
for ε-BAI in transductive linear bandits with Gaussian distributions. LεBAI is asymptotically
optimal and has competitive empirical performance.

Top Two Approach

The Top Two approach [Russo, 2016] arose as an adaptation of the Thompson Sampling
algorithm for regret minimization [Thompson, 1933] to best arm identification in multi-armed
bandit models, for parametric families of arms. The Top Two approach is the main topic of
this thesis, and many papers have been published on those algorithms since this thesis started.
Therefore, we only give a historical picture here and provide extensive details in Chapter 2.

At each time n , a Top Two algorithm defines two candidate answers, a leader and a challenger,
and samples the next arm among those two arms to verify that the leader is a better answer
than the challenger. As we will see in Chapter 2, many choices are possible when defining a
Top Two algorithm. Russo [2016] introduced Top Two Probability Sampling (TTPS) and Top
Two Thompson Sampling (TTTS). TTTS follows a simple idea: as vanilla Thompson Sampling
(TS) selects the optimal arm too much, with some probability 1 − β , TTTS forces itself to select
an arm that is not the one selected by TS, by re-sampling the posterior until another arm has
the largest posterior sample. Adopting a Bayesian viewpoint, Russo studied the convergence
rate of the posterior probability that i⋆ is not the best arm, under some conditions on the prior.

For Gaussian bandits, other Bayesian Top Two algorithms with frequentist components are
asymptotically β-optimal: Top Two Expected Improvement (TTEI [Qin et al., 2017]) and Top
Two Transportation Cost (T3C [Shang et al., 2020]). At the beginning of this thesis, there were
many open research directions as regards the Top Two approach. Some answers are given in
this thesis, and others have been given by concurrent works. Notably, an adaptive choice of β
to achieve asymptotic optimality was analyzed in You et al. [2023].

In Section 8.3 of Chapter 8, we highlight that the Top Two algorithms can be seen as saddle-
point algorithms. Since they also aim at solving this min-max game between the agent and
nature, they bear similarities with the game-based algorithm.

Contribution 1.5. In Part I, we present the Top Two approach for BAI in vanilla bandits for
Gaussian distributions with known variance in Chapter 2, Gaussian distributions with unknown
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variance in Chapter 3 and bounded distributions in Chapter 4. In Chapter 2, we propose a generic
definition of a Top Two algorithm, which is specified by four choices, and propose several instances.
We provide a unified asymptotic analysis of the Top Two approach, which identifies desirable properties
on the choices of the leader and challenger answers to achieve asymptotic ( β-)optimality. Then, we
give the first non-asymptotic analysis of a Top Two algorithm. In Chapter 5, we present the Top Two
approach for ε-BAI in vanilla bandits. We propose the EB-TCε algorithm which has near-optimal
asymptotic and non-asymptotic guarantees on its expected sample complexity. In Chapter 8, we
present the Top Two approach for ε-BAI in transductive linear bandits, and propose LεTT as an
extension of EB-TCε which enjoys competitive empirical performance.

Other Sampling Rules

While the algorithms described above aim at being asymptotically optimal, other approaches
were designed to obtain non-asymptotic guarantees (e.g. LUCB [Kalyanakrishnan et al., 2012],
UGapEc [Gabillon et al., 2012], KL-LUCB [Kaufmann and Kalyanakrishnan, 2013], Exp-
Gap [Karnin et al., 2013], lil’UCB [Jamieson et al., 2014], etc). The first BAI algorithms were
introduced and studied under the assumption that the observation has bounded support, with
a known upper bound [Even-Dar et al., 2006, Kalyanakrishnan et al., 2012, Gabillon et al., 2012,
Jamieson et al., 2014]. The sample complexity bounds proved for these algorithms scale as the
sum of the squared inverse gap, i.e.

H(µ) := 2∆−2
min +

∑
i ̸=i⋆

2(µi⋆ − µi)−2 with ∆i := (µi⋆ − µi) and ∆min := min
i ̸=i⋆

∆i . (1.12)

It satisfies H(µ) ≤ T ⋆(ν) ≤ 2H(µ) where T ⋆(ν) is the characteristic time for Gaussian distribu-
tions with unit variance [Garivier and Kaufmann, 2016]. The usual non-asymptotic guarantees
that are obtained are of the order of O (H(µ) log(H(µ)/δ)) . Unfortunately, the O(·) notation
often hides the large and non-explicit constants, except for LUCB [Kalyanakrishnan et al., 2012]
which satisfies Eν [τδ] ≤ 292H(µ) log(H(µ)/δ) + 16 .

1.5 Beyond the Fixed-confidence Setting

Even though the fixed-confidence setting (see Section 1.4) is theoretically appealing as it is
well understood, the budget is often limited. In the fixed-budget setting (see Section 1.5.1), the
maximal budget is assumed to be known beforehand. While both fixed-confidence and fixed-
budget settings have been studied extensively, they rarely coincide with concrete experimental
setups. For example, they do not cope with early stopping and continuation (see Section 1.3).
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Therefore, one should strive to go beyond those twomajor theoretical frameworks, and consider
a more practical one.

Regardless of the objective of the agent, a good identification strategy should ideally come
with guarantees on its current candidate answer that hold at any time. This is exactly the
promise of the anytime setting (see Section 1.5.2) which solves the limitation of both the
fixed-confidence and the fixed-budget settings. Such an anytime identification strategy is
broadcasting (or producing) a stream of “good” recommendations (̂ın)n∈N .

We highlight here that, if made available to others, this stream could be used in parallel by
several actors each one having a different objective. Some actors might have different budgets
{Tk}k∈[N ] or error parameters {δk}k∈[N ] , other might want to answer a similar yet different
question or simply maximize their cumulative gains. Taking a step back, it is not uncommon
for an agent to internalize the sampling cost of an identification procedure, and then broadcast
its recommendations. For example, a non-profit (or governmental) organization will provide
recommendations (e.g. on health or education) to the population for “free” since the cost is
paid with a donation (or taxes). For private companies, recommendations (e.g. latest fine-tuned
parameters for a large language model) might be sold to customers or other companies in
exchange for a fee or a subscription. Sometimes those recommendations are given for “free”
since the customers are targeted to sell their data (e.g. queries to a large language model) or
become clients of subsidiary brands.

1.5.1 Fixed-budget Setting

In the fixed-budget setting, the agent is given a budget T ∈ N . The stopping rule is deterministic
since we stop after having collected T samples, and the recommendation rule needs only to be
defined at time T . A fixed-budget identification strategy is judged based on its probability of
error Pν(Eerr

µ (T )) at time T , i.e. the probability that the candidate answer ı̂T at time T is not a
correct answer. A “good” fixed-budget algorithm should minimize Pν(Eerr

µ (T )) .

Algorithms whose Error Decays Exponentially

As in Section 1.4.3, we will restrict ourselves to vanilla BAI, hence Eerr
µ (T ) = {ı̂T /∈ i⋆(µ)} .

Moreover, we use the set D[0,1] of bounded distributions to fix the ideas. The algorithmic ideas
described below have been generalized to other settings.

Uniform sampling rule Before introducing fixed-budget algorithms that leverage the knowl-
edge of T , one can first understand the performance of the uniform sampling rule. It pulls
arms in a round-robin fashion and recommends the empirical best arm, i.e. ı̂n ∈ i⋆(µn) . Using
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Hoeffding’s inequality, for all n ∈ N ,

Pν (̂ın /∈ i⋆(µ)) ≤
∑

i/∈i⋆(µ)
Pν (µn,i ≥ µn,i⋆) ≤

∑
i/∈i⋆(µ)

exp
(

−∆2
i

⌊
n

K

⌋)

≤ (K − |i⋆(µ)|) exp
(

− n−K

K∆min(µ)−2

)
,

with ∆i := µ⋆ − µi is the gap of arm i /∈ i⋆(µ) and ∆i = ∆min(µ) for all i ∈ i⋆(µ) where
∆min(µ) := mini/∈i⋆(µ) ∆i is the smallest strictly positive gap. Asymptotically, we obtain that

lim sup
n→+∞

n

− logPν (̂ın /∈ i⋆(µ)) ≤ K

∆min(µ)2 .

This inequality gives an asymptotic upper bound on the rate of the exponential decay.
As for the fixed-confidence setting, we will see that better fixed-budget algorithms can be

designed. Note that the uniform algorithm is the canonical example of an anytime algorithm,
i.e. independent of any parameter ( δ or T ) and has theoretical guarantees at any time.

Eliminationbased Themost popular algorithmic approach to fixed-budget BAI is the elimination-
based one. It has a round-based structure, and it recommends the last active answer. An
algorithm is then defined by its number of rounds and, for each round, the number of active
answers and the fixed allocation to the arms. The two most famous instances are Successive
Reject (SR [Audibert et al., 2010]) and Sequential Halving (SH [Karnin et al., 2013]).

SR uses K − 1 phases. Let logK = 1/2 +
∑

i∈[K] 1/i and nk = ⌈ T −K
(K+1−k)logK

⌉ with n0 = 0 .
During phase k , it samples all the remaining arms nk − nk−1 times and rejects one answer, the
one with the worst empirical mean. Audibert et al. [2010] proves that

Pν (̂ıT /∈ i⋆(µ)) ≤ K(K − 1)
2 exp

(
− T −K

H2(µ)logK

)
,

where H2(µ) = maxk∈[K] i∆−2
(k) where (k) denotes the index of the arm with the kth highest

mean. Therefore, a sequence of SR algorithms would haveH2(µ)logK as an asymptotic upper
bound on their rate of exponential decay. Recently, Wang et al. [2024] provided an improved
asymptotic rate for SR by using the large deviation principle (asymptotic arguments). Interest-
ingly, they introduce and analyze the CR (continuous reject) algorithm which can adaptively
discard an arm at any time.

In contrast, SH only uses log2K phases since it rejects half of the remaining answers, the
ones with the worst empirical mean. During phase k , it samples all the remaining arms in Ak

a number
⌊

T
|Ak|⌈log2 K⌉

⌋
of times. Note that SH drops the observations collected in the previous
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phases. Karnin et al. [2013] proves that

Pν (̂ıT /∈ i⋆(µ)) ≤ 3 log2(K) exp
(

− T

8H2(µ) log2K

)
.

Therefore, a sequence of SH algorithms would have 8H2(µ) log2K as an asymptotic upper
bound on their rate of exponential decay. In recent years, improvements have been made on the
analysis of SH, e.g. better rate [Zhao et al., 2023] and allowing to keep past observations [Kone
et al., 2024]. Both SR and SH have an asymptotic rate which is better than the one achieved by
uniform sampling in most instances.

Prior knowledge based Several fixed-budget BAI algorithms assume that the agent has access
to some prior knowledge on unknown quantities to design upper/lower confidence bounds
(UCB/LCB), e.g.UCB-E [Audibert et al., 2010] and UGapEb [Gabillon et al., 2012]. While
this assumption is often not realistic, it yields better guarantees. For example, UCB-E uses the
knowledge of H(µ) to set its exploration parameter to a = 25

36
T −K
H(µ) in order to achieve

Pν (̂ıT /∈ i⋆(µ)) ≤ 2TK exp
(

−T −K

9H(µ)

)
.

where H(µ) =
∑

i∈[K] 2∆−2
i . Therefore, a sequence of UCB-E algorithms would have 18H(µ)

as an asymptotic upper bound on their rate of exponential decay. Compared to SR and SH, the
logK term has been shaved off. In Section 1.5.1, we will see that this dependency is necessary
without assuming prior knowledge.

Lower Bound on the Probability of Error

As for the fixed-confidence setting, it is interesting to understand what are the limits on the
probability of error. Since lower bounds are only defined for a given class of algorithms, we will
assume that the sequence of algorithms (AT )T ∈N is consistent, i.e. limT →+∞ Pν (̂ıT /∈ i⋆(µ)) = 0
for all ν ∈ DK .

Let ET = Eerr
µ (T ) and κ ∈ Alt(ν) . Using consistency, we know that Pκ(ET ) →T →+∞ 1 . As

in Section 1.4.1, we can use the data-processing inequality to show that
∑

i∈[K]
Eκ[NT,i]KL(κi, νi) ≥ kl(Pκ(ET ),Pν(ET )) ≥ −Pκ(ET ) logPν(ET ) − log 2 ,
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where we used that kl(x, y) ≥ −x log y − log 2 . By re-ordering, taking the limit on T and the
infimum on κ , we obtain

lim inf
T →+∞

T

− logPν (̂ıT /∈ i⋆(µ)) ≥

 inf
κ∈Alt(ν)

lim sup
T →+∞

∑
i∈[K]

Eκ[NT,i]
T

KL(κi, νi)

−1

.

While Eκ[NT ]/T ∈ ΣK , it depends both on the alternative κ and on the budget T , hence we
cannot take the supremum over ΣK . Let w ∈ Σ̊K . Considering the class of algorithms which
have static proportion w asymptotically, i.e. limT →+∞ Eκ[NT,i]/T = wi for all κ , we obtain

lim inf
T →+∞

T

− logPν (̂ıT /∈ i⋆(µ)) ≥ HCsp(ν, w) with HCsp(ν, w)−1 = inf
κ∈Alt(ν)

∑
i∈[K]

wiKL(κi, νi) .

Let us define HCsp(ν) = minw∈Σ̊K
HCsp(ν, w) . Therefore, the characteristic time for the best

static allocation for a given instance ν seems to be HCsp(ν) . The difference between HCsp(ν)
and T ⋆(ν) lies in the fact that the arguments of the KL divergence are swapped, i.e. KL(κi, νi)
instead of KL(νi, κi) .

While the above lower bound is instance-dependent, other lower bounds have been derived
in the literature with a worst-case flavor. By worst-case lower bound, we mean that for any
sequence of algorithms (AT )T ∈N, there exists an instance ν (or a sequence of instances (νT )T ∈N )
withmeanµ such that the probability of error is asymptotically lower bounded byC(µ) > 0 . For
example, Audibert et al. [2010] show that, for Bernoulli distributions with mean µ ∈ [p, 1 − p]K

lim inf
T →+∞

T

− log maxσT ∈GK
PνσT (̂ıT /∈ i⋆(µσT )) ≥ p(1 − p)

5 H2(µ) ,

where GK denotes the set of permutation over [K] and νσ denotes the bandit instance with
mean vector µσ obtained after permuting the arms according to σ ∈ GK . Carpentier and
Locatelli [2016] show that, for Bernoulli distributions with mean µ ∈ [1/4, 3/4]K ,

∃ν, lim inf
T →+∞

T

− logPν (̂ıT /∈ i⋆(µ)) ≥ logK
800 H(µ) .

Komiyama et al. [2022] conjectured that no strategy might perform uniformly well under all
bandit instances, and Degenne [2023] proved this conjecture by using similar techniques as
in Carpentier and Locatelli [2016].

1.5.2 Anytime Setting

In the anytime setting, no fixed parameter is given to the algorithm to define its performance
metric. Compared to the fixed-confidence and the fixed-budget setting where a single real
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value should be minimized, an infinity of real-valued metrics should be minimized. Instead of
controlling the error and minimizing the budget or controlling the budget and minimizing the
error, an anytime strategy is judged based on how “good” its candidate answer is at any time.

Themain advantage of an anytime strategy lies in its versatility. Ideally, it should be possible
to use it without modification for fixed-confidence and fixed-budget identification, i.e. only the
stopping rule should depend on the error δ or the budget T . Therefore, when combined with
the corresponding stopping rule, an anytime strategy should be judged on its expected sample
complexity at any confidence level δ , i.e. {Eν [τδ] | δ ∈ (0, 1)} , and on its probabilities of error
at any deterministic3 time n , i.e. {Pν(Eerr

µ (n)) | n ∈ N} .
Importantly, when combined with the δ-dependent stopping rule, the algorithm should

still be δ-correct. Since the anytime strategy is independent of δ , it means that the stopping
rule should ensure δ-correctness regardless of the sampling rule. This property is satisfied by
the GLR stopping rule, hence we will use it in the following.

Pareto front on the performance Since an anytime algorithm can be used in the fixed-
confidence and fixed-budget settings, the lower bounds of those settings also apply (see
Sections 1.4.1 and 1.5.1). As we will see on some specific pure exploration problems, it is
not possible to achieve the best performance in both settings. The impossibility of having a
“best-of-both” world algorithm opens an interesting research avenue that aims at understanding
the Pareto front of the performance. This would help understand what is the fundamental
trade-off between optimizing for the expected sample complexities or the probability of errors.
While the lower bound aspect of this open problem is beyond the scope of this thesis, Part II
presents elements of answer for the upper bound aspect both in ε-BAI and GAI.

Contribution 1.6. In Chapter 5, we prove anytime guarantees for the EB-TCε algorithm. This
algorithm simultaneously achieves near asymptotic optimality when combined with the GLRε

stopping rule, and has an anytime exponential decay of its probability of ε̃-error (for any slack
ε̃ ≥ 0 ) which is theoretically comparable to the one of uniform sampling. In Chapter 6, we prove
anytime guarantees for the APGAI algorithm. When there are no good arms, APGAI simultaneously
achieve asymptotic optimality when combined with the GLR stopping rule, and has an anytime
upper bound on its probability of error exhibiting an exponential decay which is better than the
known upper bound on the exponential decay for uniform sampling. When there are good arms, the
theoretical guarantees are less satisfying, and experiments suggest that a better theoretical rate could
be achieved.

Jun and Nowak [2016] propose the anytime exploration setting, in which they control the
error probability Pν (̂ın ̸= i⋆) for exact best arm identification. Interestingly, the authors build

3In contrast to a random stopping time τδ , a deterministic stopping time n is independent of the history Fn .
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1.5 Beyond the Fixed-confidence Setting

on an algorithm for the fixed-confidence setting, LUCB [Kalyanakrishnan et al., 2012], whose
sampling rule depends on the risk parameter δ , which they replace by a sequence δn . However,
it has since been discovered that there is an error in their analysis.

Different Downstream Tasks

While an anytime algorithm can be straightforwardly used to tackle the same identification
problem in fixed-confidence and fixed-budget settings, the stream of recommendation and
the associated guarantees can also be leveraged for different downstream tasks. We refer the
reader to Chapter 5 for more details on the following practical examples.

For example, the observations collected by an ε-BAI algorithm, as well as its recommended
answers, could be used to tackle ε̃-BAI with ε̃ ∈ {εk}k∈[N ] . Given ε̃ ̸= ε , this information
can be leveraged in the fixed-confidence setting, i.e. {Eν [τε̃,δ] | δ ∈ (0, 1)} , or the fixed budget
setting, i.e. {Pν (̂ın /∈ Iε̃(µ)) | n ∈ N} .

Introduced in Audibert et al. [2010], the expected simple regret is defined as Eν [µ⋆ − µı̂n ] ,
and is independent of any parameter ε . Simple regret is typically studied in an anytime setting:
Bubeck et al. [2011] contains upper bounds on the simple regret at time n for any n ∈ N∗ . Since
Eν [µ⋆ − µı̂n ] =

∫
R+

Pν (̂ın /∈ Iε(µ))d ε , anytime guarantees on the expected simple regret can be
obtained for an algorithm with anytime guarantees on the uniform ε-error probability [Zhao
et al., 2023], i.e. {Pν (̂ın /∈ Iε(µ)) | (n, ε) ∈ N × R+} .

Finally, to minimize its cumulative regret, an agent could simply pull the recommended arm
ı̂n at time n . At time T , the regret of the induced policy would be defined as∑n∈[T ] Eν [µ⋆ −µı̂n ]
. The idea of decoupling exploration and exploitation when minimizing the regret in the
multi-armed bandits literature was introduced by Avner et al. [2012]. Naturally, anytime
guarantees on the expected cumulative regret of the induced policy can be obtained when the
recommendations are associated with any time guarantees on the expected simple regret.

For other identification problems (e.g.GAI), it might be less clear how to define relevant
downstream tasks both in terms of related pure exploration problems or in terms of regret for
an induced policy. The specifics highly depend on the task tackled by the algorithm which
does the data collection and streams the recommendations.

Anytime Guarantees on Existing Algorithms

Before designing algorithms tailored to the anytime setting, one could attempt to leverage
existing fixed-budget and fixed-confidence algorithms, e.g.modify them and/or derive addi-
tional guarantees. For the sake of example, we restrict ourselves to vanilla BAI and bounded
distributions D[0,1] in the following.
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Uniform sampling rule As we saw in Section 1.5.1, the uniform algorithm is the canonical
example of an anytime algorithm. When combined with the GLR or fixed-budget stopping
rule, it satisfies that

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤

(
min
i ̸=i⋆

C(i⋆, i; ν, 1K/K)
)−1

and lim sup
n→+∞

n

− logPν (̂ın /∈ i⋆(µ)) ≤ K

∆min(µ)2 .

In addition to being minimax optimal for the probability of error [Bubeck et al., 2011], uniform
sampling is versatile and it has any time guarantees in both settings. However, in terms of
instance-dependent guarantees, uniform sampling is worse than existing fixed-confidence and
fixed-budget algorithms. As such it is often the default choice for an identification strategy
when the downstream objective is not clearly defined beforehand.

From fixed-budget to anytime algorithms The doubling trick [Jun and Nowak, 2016, Zhao
et al., 2023] allows the conversion of any fixed-budget algorithm into an anytime algorithm,
i.e. an algorithm that does not depend on a budget T fixed beforehand. It considers a sequence
of algorithms that are run with increasing budgets {Tk}k∈N , and recommends the answer
outputted by the last instance. When considering Tk+1 = 2Tk for SR (resp. SH) and T1 =
2K⌈log2K⌉ , it is possible to show that the rate of decays is only impacted by a multiplicative
factor 4 . When combined with the fixed-budget stopping rule, it satisfies that

lim sup
n→+∞

n

− logPν (̂ın /∈ i⋆(µ)) ≤ 4H2(µ)logK ( resp. 32H2(µ) log2K ) .

The major weakness of the doubling trick lies in the fact that it resets its history when it starts a
new algorithm, i.e. it drops observations from the runs with a smaller budget.

By using the doubling trick, we only provide one side of the guarantees that are desired for
an anytime algorithm. Namely, it does not an provide upper bound on the expected sample
complexity that this procedure entails. Using an analysis similar to the one we developed
in Azize et al. [2023], it is possible to define a δ-correct stopping rule for this procedure. First,
the GLR stopping rule should only be evaluated when the current instance runs out of the
intermediate budget. Second, instead of considering the total allocation Nn , the allocation
collected by the current instance should be used in the GLR stopping rule since only those
observations are used to update the candidate answer. While the analysis of this procedure is
beyond the scope of this manuscript, we showed in Azize et al. [2023] that the price of doubling
and forgetting for the GLR stopping rule is also a multiplicative 4 factor. Intuitively, in the
asymptotic regime, the arms will be eliminated by decreasing the gap value, i.e. the arms with
the smallest true mean will be rejected before the others. For the SR algorithm, we conjecture
that

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ 4

(
min
i ̸=i⋆

C(i⋆, i; ν, wSR)
)−1

,
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where wSR,(k) = (klogK)−1 for all k > 1 , and wSR,(1) = (2logK)−1 . A similar conjecture could
be made for the SH algorithm.

From fixed-confidence to anytime algorithms In Section 1.4.3, we presented three approaches
to design a fixed-confidence sampling rule which is independent of δ . When combined with
the GLR stopping rule, they satisfy

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ T ⋆(ν) .

As above, this only provides one side of the desired guarantees, and we still need to upper
bound the probability of error at any time. Unfortunately, it is known that algorithms that
have optimal asymptotic guarantees in the fixed-confidence setting can be sub-optimal in terms
of error probability. Indeed Komiyama et al. [2022] prove in their Appendix C that for any
asymptotically optimal (exact) BAI algorithm, there exist instances in which the error probabil-
ity cannot decay exponentially with the horizon, which makes them worse than the (minimax
optimal) uniform sampling strategy [Bubeck et al., 2011]. Their argument relies on the sparsity
of the optimal allocation also appears in BAI when considering the limit of ∆min → 0 . Since
the optimal allocation is not asymptotically sparse in ε-BAI, the story is different. This allowed
us to obtain good anytime guarantees for EB-TCε (see Chapter 5 for more details).

1.6 Outline of the Thesis

After this introductory Chapter 1, this thesis is organized into three parts corresponding to the
type of pure exploration problems that we studied. Figure 1.1 summarizes the outline of this
thesis in a diagram.

In Part I, we study the vanilla BAI problem in the fixed-confidence setting through the
lens of the Top Two approach and generalize it for multiple classes of distributions. While
our contributions are theoretical, they are driven by practical considerations: (1) the Top Two
algorithms are easy to understand (and implement) and most of them are computationally
efficient and (2) more general distributions can better approximate real-world distributions.

• In Chapter 2, we illustrate the Top Two approach with the set DNσ of Gaussian distribu-
tions with known variance σ2 . We show how a Top Two algorithm is defined by four
choices (leader answer, challenger answer, targeted allocation, and mechanism to reach
it) and propose several instances. We present a unified asymptotic analysis of the Top
Two approach, which identifies desirable properties for each of those four choices. More-
over, we give the first non-asymptotic analysis of a Top Two algorithm, which identifies
sufficient properties of the leader (seen as a regret-minimization algorithm) for it to hold.
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Chapter 2
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Distributions

Chapter 5
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Arm Identification

Chapter 6
Good

Arm Identification

Chapter 7
Choosing the
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Chapter 8
Extending the

Top Two Approach

Figure 1.1 – Outline of this thesis. Part I studies best arm identification in the fixed-confidence setting.
Part II considers relaxed notions of arm identification in the anytime setting. Part III tackles transductive
linear bandits.

While different Top Two algorithms have similar empirical performance, they tend to
outperform other algorithms.

• In Chapter 3, we consider the set DN of Gaussian distributions with unknown variance.
We introduce and analyze two approaches to deal with unknown variances, either by
plugging in the empirical variance or by adapting the transportation costs. To calibrate
our two stopping rules, we derive new time-uniform concentration inequalities, which are
of independent interest. Then, we illustrate the theoretical and empirical performances
of our two sampling rule wrappers on Track-and-Stop and on a Top Two algorithm.
Moreover, by quantifying the impact on the sample complexity of not knowing the
variances, we reveal that it is rather small.

• In Chapter 4, we tackle the set D[0,B] of bounded distributions with support in [0, B]
with B > 0 . We extend the Top Two instances proposed in Chapter 2 for this class of
non-parametric distributions and show that the desirable properties are satisfied. We
illustrate the good empirical performance of those algorithms on the DSSAT real-world
data.

In Part II, our goal is to study the impact of having multiple correct answers and understand
if algorithms can have good anytime guarantees. Therefore, we consider two relaxed identifica-
tion problems in the anytime setting: ε-BAI and GAI. Likewise, our contributions are motivated
by practical considerations: (1) easier problems that better fit the goal of practitioners and (2)
“universal” algorithms that have good guarantees in different experimental setups.
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• In Chapter 5, we tackle ε-BAI in the anytime setting. We propose EB-TCε, which is the
first instance of the Top Two algorithm analyzed for ε-BAI. EB-TCε is an anytime sampling
rule that can therefore be employed without modification for fixed confidence or fixed
budget identification (without prior knowledge of the budget). We provide three types of
theoretical guarantees for EB-TCε . We prove bounds on its expected sample complexity
in the fixed confidence setting, notably showing its asymptotic optimality in combination
with an adaptive tuning of its exploration parameter. We complement these findings with
upper bounds on its probability of error at any time and for any error parameter, which
further yields upper bounds on its simple regret at any time. Finally, we show through
numerical simulations that EB-TCε performs favorably compared to existing algorithms,
in different settings.

• In Chapter 6, we study GAI in the anytime setting. We propose APGAI, an anytime and
parameter-free sampling rule for GAI in stochastic bandits, which can be straightforwardly
used in fixed-confidence and fixed-budget settings. Our upper bounds on its probability
of error at any time show that adaptive strategies aremore efficient in detecting the absence
of good arms than uniform sampling. When APGAI is combined with a stopping rule,
we prove upper bounds on the expected sampling complexity, holding at any confidence
level. We illustrate the good empirical performance of APGAI on real-world data from
an outcome scoring problem, as well as on synthetic instances.

In Part III, we aim to understand the impact of the structure in pure exploration problems
which have multiple correct answers. To that end, we study ε-BAI for transductive linear
bandits in the fixed-confidence setting. Similarly, our contributions are motivated by a practical
consideration: the linear assumption can be more realistic than the independence assumption
of the vanilla setting.

• In Chapter 7, we study the importance of the choice of the candidate answer for ε-BAI in
transductive linear bandits. Using an instantaneous easiest-to-verify answer as a candidate
answer, we propose a simple procedure to adapt existing BAI algorithms for ε-BAI.
Leveraging it in the sampling rule as well, we propose a game-based algorithm (named
LεBAI) which is asymptotically optimal and has competitive empirical performance.

• In Chapter 8, we extend the Top Two approach to tackle structured bandits such as ε-
BAI for transductive linear bandits. Among other Structured Top Two algorithms, we
propose the LεTT algorithm which recovers EB-TCε for vanilla BAI (see Chapter 5). We
highlight the challenges in the analysis of the expected sample complexity and perform an
empirical study showcasing the good empirical performance of LεTT. The contributions
in Chapter 8 are currently unpublished since most challenges are not solved yet.
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1.7 Publications

During my PhD thesis, I had the opportunity to conduct several research projects with different
collaborators, including my supervisors, other PhD students, and researchers. Based on those
projects, we published several papers which are detailed below.

Publications in international conferences with proceedings

• Choosing answers in ε-best-answer identification for linear bandits, by Marc Jourdan and
Rémy Degenne. International Conference on Machine Learning (ICML), 2022. See Chapter 7.
[Jourdan and Degenne, 2022].

• Top two algorithms revisited, by Marc Jourdan, Rémy Degenne, Dorian Baudry, Rianne De
Heide, and Emilie Kaufmann. Advances in Neural Information Processing Systems (NeurIPS),
2022. See Chapters 2 and 4. [Jourdan et al., 2022].

• Dealing with unknown variances in best-arm identification, by Marc Jourdan, Rémy Degenne
and Emilie Kaufmann. International Conference on Algorithmic Learning Theory (ALT), 2023.
See Chapter 3. [Jourdan et al., 2023a].

• Non-asymptotic analysis of a ucb-based top two algorithm, by Marc Jourdan and Rémy De-
genne. Advances in Neural Information Processing Systems (NeurIPS), 2023. See Chapter 2.
[Jourdan and Degenne, 2023].

• An ε-best-arm identification algorithm for fixed-confidence and beyond, by Marc Jourdan,
Rémy Degenne and Emilie Kaufmann. Advances in Neural Information Processing Systems
(NeurIPS), 2023. See Chapters 2 and 5. [Jourdan et al., 2023b].

• On the complexity of differentially private best-arm identification with fixed confidence, by Achraf
Azize, Marc Jourdan, Aymen Al Marjani and Debabrota Basu. Advances in Neural In-
formation Processing Systems (NeurIPS), 2023. [Azize et al., 2023]. We do not detail this
work in this thesis, as it involves the differential privacy framework. In a nutshell, we
formalize the global differentially private best-arm identification problem and design
a Top Two algorithm to solve it nearly optimally. Our algorithm ensures privacy by
considering private estimators which can be computed by using adaptive phases. When
there is no privacy constraint, our algorithm achieves asymptotic near-optimality (up to
a multiplicative 4 factor) with O(K log(T ⋆(ν) log(1/δ)) rounds of adaptivity.

Preprints

• An anytime algorithm for good arm identification, by Marc Jourdan and Clémence Réda. See
Chapter 6. [Jourdan and Réda, 2023].
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• Differentially private best-arm identification, by Achraf Azize, Marc Jourdan, Aymen Al
Marjani, and Debabrota Basu. [Azize et al., 2024]. Journal extension of [Azize et al.,
2023], which we do not detail in this thesis. In a nutshell, we study the local differentially
private best-arm identification problem, with a lower bound and a near-matching upper
bound. Then, we propose an improved Top Two algorithm for global differentially private
BAI, which improves on our previous work.
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Chapter 2

A Pedagogical Example: Gaussian with
Known Variances

In Chapter 2, we study the vanilla BAI problem for Gaussian distributions with known
variance in the fixed-confidence setting, as described in Chapter 1. This chapter unifies results
that were published in Jourdan et al. [2022], Jourdan andDegenne [2023], Jourdan et al. [2023b].

A Top Two sampling rule for bandit identification is a method that selects the next arm to
sample from among two candidate arms, a leader and a challenger. Due to their simplicity and
good empirical performance, they have received increased attention in recent years. In this
chapter, we propose a generic definition of the Top Two approach that requires making four
choices (leader answer, challenger answer, targeted allocation, and mechanism to reach it) and
provide several instances for each choice. We present a unified asymptotic analysis of the Top
Two approach, which identifies desirable properties for each of those four choices. Moreover,
we give the first non-asymptotic analysis of a Top Two algorithm, which identifies sufficient
properties of the leader (seen as a regret-minimization algorithm) for it to hold. Empirically,
different Top Two algorithms have similar performance, and they tend to outperform other
algorithms.
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A Pedagogical Example: Gaussian with Known Variances

2.1 Introduction

Despite the restricted scope of its applications, studying the identification task for Gaussian
distributions is a natural first step. As we shall see, the insights gained will then be generalized
to wider classes of distributions.

We consider the set DNσ of Gaussian distributions with variance σ , and assume that σi = 1
for all i ∈ [K] by scaling, hence DK = DK

N1
. Let ν ∈ DK which is uniquely defined by its mean

vector µ ∈ RK such that the set of arms with largest mean i⋆(µ) := arg maxi∈[K] µi is reduced
to a singleton denoted by i⋆ (or i⋆(µ) by abusing notation), i.e. S = {µ ∈ RK | |i⋆(µ)| = 1} .

A fixed-confidence algorithm is defined by a sampling rule, a recommendation rule and
a stopping rule. At time n , we denote by ı̂n the candidate answer and by In the arm to pull.
The stopping rule (and stopping time τδ ) using a fixed confidence level 1 − δ ∈ (0, 1) should
ensure δ-correctness, i.e. Pν (τδ < +∞, ı̂τδ

̸= i⋆(µ)) ≤ δ for all instances ν ∈ DK with mean
µ ∈ S . As explained in Section 1.4.1, the δ-correctness requirement leads to a lower bound on
the expected sample complexity on any instance.

Lemma 2.1 (Garivier and Kaufmann [2016]). An algorithm which is δ-correct on all problems
in DK satisfies that, for all ν ∈ DK with mean µ ∈ S , Eν [τδ] ≥ T ⋆(ν) log(1/(2.4δ)) , where
T ⋆(ν) = minβ∈(0,1) T

⋆
β (ν) and, for all β ∈ (0, 1) ,

T ⋆
β (ν)−1 = max

w∈ΣK ,wi⋆ =β
min
i ̸=i⋆

C(i⋆, j; ν, w) with C(i, j; ν, w) = 1 (µi > µj) (µi − µj)2

2 (1/wi + 1/wj) .

When considering the sub-class of algorithms allocating a fraction β of their sample to
the best arm, we obtain a lower bound as in Lemma 2.1 with T ⋆

β (ν) instead of T ⋆(ν) . An
algorithm is said to be asymptotically optimal (resp. β-optimal) if its sample complexity
matches that lower bound asymptotically, that is if lim supδ→0 Eν [τδ]/ log(1/δ) ≤ T ⋆(ν) (resp.
T ⋆

β (ν) ) for all ν ∈ DK with mean µ ∈ S . Russo [2016] showed the worst-case inequality
T ⋆

1/2(ν) ≤ 2T ⋆(ν) for any single-parameter exponential family. Therefore, the expected sample
complexity of an asymptotically β-optimal algorithm with β = 1/2 is, at worst, twice higher
than that of any asymptotically optimal algorithm. Leveraging the symmetry of Gaussian
distributions with unit variance, a tighter worst-case inequality could be derived (see Lemma
C.6 in Jourdan and Degenne [2023]). The allocations w⋆(ν) and w⋆

β(ν) realizing T ⋆(ν) and
T ⋆

β (ν) are known to be unique, and satisfy mini∈[K] min{w⋆(ν)i, w
⋆
β(ν)i} > 0 . Barrier et al.

[2022] showed that 2 ≤ w⋆(ν)−1
i⋆ ≤

√
K − 1 + 1 (Proposition 10 in Barrier et al. [2022]). Let

H(µ) := 2∆−2
min +

∑
i ̸=i⋆ 2∆−2

i where ∆i = µi⋆ − µi and ∆min = mini ̸=i⋆ ∆i , which satisfies
H(µ) ≤ T ⋆(ν) ≤ 2H(µ) [Garivier and Kaufmann, 2016].
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2.1 Introduction

Contribution 2.1. In Chapter 2, we illustrate the Top Two approach with the set of Gaussian
distributions with unit variance.

• We propose a unified perspective on the class of Top Two algorithms that puts forward four
choices (leader answer, challenger answer, target allocation, and mechanism to reach it) and
propose several instances (Section 2.2).

• We present a unified asymptotic analysis of the Top Two approach (Section 2.3), which
identifies desirable properties on the choices of the leader and challenger answers to achieve
asymptotic ( β-)optimality (Theorem 2.8).

• We give the first non-asymptotic analysis of a Top Two algorithm (Theorem 2.24), which
identifies sufficient properties of the leader (seen as a regret-minimization algorithm) for it to
hold (Section 2.4).

• While different Top Two algorithms have similar empirical performance, they tend to outperform
other algorithms (Section 2.5).

2.1.1 GLR Stopping Rule

For an arm i , we denote its number of pulls before time n by Nn,i =
∑

t∈[n−1] 1 (It = i) and its
empirical mean by µn,i =

∑
t∈[n−1] 1 (It = i)Xt,i .

For the recommendation rule, we use ı̂n ∈ i⋆(µn) as candidate answer, i.e. the empirical
best (EB) arm. For the stopping rule, we use the GLR stopping rule (see Section 1.4.2 for more
details). For Gaussian distributions, the GLR can be written as mini ̸=ı̂n Wn(̂ın, i) , where the
empirical transportation cost between arm i and arm j is defined as

Wn(i, j) = C(i, j; νn, Nn) = 1 (µn,i > µn,j) (µn,i − µn,j)2

2 (1/Nn,i + 1/Nn,j) . (2.1)

Given a threshold function c(n, δ) , the GLR stopping rule is

τδ = inf
{
n ∈ N | min

j ̸=ı̂n

Wn(̂ın, j) > c(n− 1, δ)
}
. (2.2)

Lemma 4.2 gives a threshold ensuring that the GLR stopping rule is δ-correct for all δ ∈ (0, 1)
, independently of the sampling rule. Its proof relies on an elegant martingale construction
proposed by Kaufmann and Koolen [2021], and is detailed in Appendix B.1.
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Lemma 2.2. Let δ ∈ (0, 1) . Given any sampling rule, using the threshold

c(n, δ) = 2CG(log((K − 1)/δ)/2) + 4 log(4 + log(n/2)) (2.3)

with the stopping rule (2.2) yields a δ-correct algorithm for Gaussian distributions with unit
variance and mean in S . The function CG is defined in (B.1). It satisfies CG(x) ≈ x+ log(x) .

2.1.2 The Greedy GLR-based Sampling Rule

Before presenting the Top Two approach for the sampling rule (see Section 2.2), we present
an intuitive sampling rule inspired by the GLR stopping rule. Since it is too greedy in practice,
we refer to it as the greedy GLR-based sampling rule. The Top Two approach is based on this
intuition.

Assume that we did not stop at time n , i.e. n < τδ . Then, we have a candidate (or
leader) answer defined as ı̂n ∈ i⋆(µn) , and an alternative (or challenger) answer defined as
ȷ̂n ∈ arg minj ̸=ı̂n

Wn(̂ın, j) . Since the stopping condition has not been met yet, i.e.Wn(̂ın, ȷ̂n) ≤
c(n − 1, δ) , the collected observations do not provide enough evidence to reject the null
hypothesis that ı̂n is worse than ȷ̂n with probability at least 1 − δ .

Since the algorithm has not stopped, the sampling rule should define a next arm to pull
In . An intuitive idea is to collect additional observation to verify that ı̂n is better than ȷ̂n
. Due to the lack of underlying structure and the fact that answers are arms, it is enough
to collect observations from an arm In ∈ {ı̂n, ȷ̂n} . There are many ways to define which
arm to choose among both options, and it could be done randomly or deterministically (see
Section 2.2). For example, a data-independent choice could be to pull the leader half of the
time. A more sophisticated data-dependent choice could be to pull the leader a fraction of
the time that depends on how often this challenger was sampled compared to the leader,
i.e.Nn,ȷ̂n/(Nn,̂ın +Nn,ȷ̂n) .

In regret minimization, the greedy sampling rule is also an intuitive sampling idea that
pulls the arm with the highest empirical mean. It known that the greedy algorithm can incur
linear regret since it is not able to recover from unlucky first draws. To circumvent this problem,
the two most well-known approaches are to use randomization or to apply the principle of
optimism in the face of uncertainty.

Due to similar reasons, this intuitive sampling rule based on the GLR stopping rule is also
too greedy. To see this, let us consider hard instances µ = (0,−∆,−∆) where ∆ > 0 . There is a
non-negligible probability that the three observations collected during initialization are unlucky.
By unlucky first draws, we mean that the true best arm is believed to be significantly worse than
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the two sub-optimal arms, i.e.X1,1 ≪ min{−∆, X2,2, X3,3} . Then, we have 1 /∈ {ı̂4, ȷ̂4} hence
the algorithmwill sample one of the two sub-optimal arms. It is possible to repeat the arguments
since X1,1 ≪ −∆ . There is a large probability that the additional collected observations will
ensure that µn,1 = X1,1 ≪ min{−∆, µn,2, µn,3} and |µn,2 − µn,3| → 0 . Therefore, the best arm
will never be sampled after initialization, i.e. 1 /∈ {ı̂n, ȷ̂n} for all n > 3 . Both randomization
and optimism can be used to add implicit exploration, hence solving the limitations of the
GLR-based sampling rule (see Section 2.2).

2.2 Generic Top Two Sampling Rule

Numerous Top Two algorithms have been proposed in recent years. In this section, we propose
a unified perspective on this class of sampling rules which puts forward four choices to define
a Top Two algorithm: the leader answer (Section 2.2.1), the challenger answer (Section 2.2.2),
the target allocation (Section 2.2.3) and the mechanism to reach the target (Section 2.2.4). The
Top Two approach is summarized in Algorithm 2.1, and we will present several instances for
each choice (see Section 2.2.5 for a naming convention).

1 Input: Mechanisms to choose the leader answer LB , the challenger answer LC ,
the target allocation LT and how to reach the target LR .

2 Output: Next arm to sample In .
3 Get Bn ∈ [K] from LB ; // Leader answer

4 Get Cn ∈ [K] \ {Bn} from LC ; // Challenger answer

5 Get βn(Bn, Cn) ∈ [0, 1] from LT ; // Target allocation

6 Get In ∈ {Bn, Cn} from LR using βn(Bn, Cn) ; // Reaching the target
Algorithm 2.1: Generic Top Two sampling rule.

As initialization, we start by sampling each arm once. In the following, the conditioning on
the history Fn is denoted by E·|n and P·|n for the expectations and probabilities.

2.2.1 Leader Answer

Based on the intuitive GLR-based sampling rule, the only requirement for the leader answer
is to be a good estimator of the correct answer, i.e. an arm with the highest mean i⋆(µ) . As
such, there are many ways to define it, both with a frequentist or a Bayesian approach, and we
summarize some of them in Table 2.1.
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Table 2.1 – Choices for the leader answer: EB (Empirical Best) (LUCB in Kalyanakrishnan et al. [2012]
and EB-TC in Jourdan et al. [2022]), UCB (Upper Confidence Bound) (TTUCB in Jourdan and Degenne
[2023]), TS (Thompson Sampling) (TTTS in Russo [2016]), EI (Expected Improvement) (TTEI in Qin
et al. [2017]), PS (Probability Sampling) (TTPS in [Russo, 2016]). Let µ⋆

n = maxi∈[K] µn,i .

Definition Approach Computational requirements
BEB

n ∈ arg maxi∈[K] µn,i Frequentist None
BUCB

n ∈ arg maxi∈[K] Un,i Frequentist Efficient UCB indices
BTS

n ∈ arg maxi∈[K] θn,i with θn ∼ Πn Bayesian Efficient sampler Πn

BEI
n ∈ arg maxi∈[K] Eθn∼Πn|n[(θn,i − µ⋆

n)+] Bayesian Efficient approximation EΠn|n
BPS

n ∈ arg maxi∈[K] Pθn∼Πn|n(i ∈ i⋆(θn)) Bayesian Efficient approximation PΠn|n

Frequentist approach With a frequentist perspective, one can consider the MLE (Maximum
Likelihood Estimator) that is our candidate answer ı̂n . The EB leader chooses the arm with
highest empirical mean [Kalyanakrishnan et al., 2012, Jourdan et al., 2022], i.e.BEB

n = ı̂n ∈
arg maxi∈[K] µn,i . The EB leader is by far the least computationally demanding choice, and it is
agnostic to the underlying class of distributions.

As mentioned above, combining the EB leader with a greedy challenger (i.e. TC challenger
defined in Section 2.2.2) yields a sampling rule that is too greedy. Therefore, additional
exploration could be enforced (implicitly or explicitly) when defining the leader. The principle
of optimism in the face of uncertainty was designed to cope with this limitation. As a proxy for
the unknown means µ , we consider UCB indices such that, with high probability, Un,i ≥ µi

for all (n, i) ∈ N × [K] . From a computational perspective, those indices should be efficient to
compute. For Gaussian distributions with unit variance, using a bonus function g : N → R+ ,
we obtain

Un,i = max
{
u ∈ R | Nn,iK+

inf(νn,i, u) ≤ g(n)
}

= µn,i +
√

2g(n)/Nn,i , (2.4)

where the last equality uses that K+
inf(κ, u) = (m(κ) − max{m(κ), u})2/2 for κ ∈ DN1 . Using

concentration inequalities, we can set g(n) = Θ(logn) . The UCB leader [Jourdan and Degenne,
2023] setsBUCB

n ∈ arg maxi∈[K] Un,i . By adding a bonus to the empiricalmean, we are optimistic
since we consider that the means are better than suggested by our observations.

Many other frequentist approaches can be used to define the leader answer. For example,
we could build on the IMED (Indexed Minimum Empirical Divergence) algorithm [Honda
and Takemura, 2015], and define the IMED leader as

BIMED
n ∈ arg min

i∈[K]

{
Nn,iK+

inf(νn,i, µ
⋆
n) + logNn,i

}
= arg min

i∈[K]

{
Nn,i(µn,i − µ⋆

n)2 + 2 logNn,i

}
,

(2.5)
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where µ⋆
n = maxi∈[K] µn,i is the largest mean, and the second equality holds for Gaussian

distributions with unit variance. The IMED leader is also efficient in computing.

Bayesian approach When adopting a Bayesian perspective, we need to have access to a
posterior distribution Πn based on the history Fn . For vanilla bandits, the posterior distribution
has a product form: Πn = Πn,1 × · · · Πn,K where Πn,i leverages Hn,i := (X1,i, . . . , XNn,i,i) ,
which is the history of samples from arm i before time n . The choice of the prior distribution
Π1,i is tightly connected to the underlying class of distributions, e.g. conjugate prior of the
likelihood function for an exponential family of distributions. For Gaussian distributions with
unit variance, using the improper prior Π1,i = N (0,+∞) yields Πn,i = N (µn,i, 1/Nn,i) as
posterior distribution of arm i before time n .

The TS (Thompson Sampling) leader was introduced in Russo [2016]. It selects an armwith
the highest coordinate for a vector drawn from the posterior distribution, i.e.BTS

n ∈ i⋆(θn) where
θn ∼ Πn . The TS leader is a randomized choice, yet deterministic choices of the leader have also
been proposed with a Bayesian flavor. The EI (Expected Improvement) leader [Qin et al., 2017]
chooses an arm with the highest expectation (for the posterior) of improving upon the highest
empirical mean, i.e.BEI

n ∈ arg maxi∈[K] Eθn∼Πn|n
[
(θn,i − µ⋆

n)+

]
. The PS (Probability Sampling)

leader [Russo, 2016] returns an arm that has the highest probability (for the posterior) of
having the highest mean, i.e.BPS

n ∈ arg maxi∈[K] Pθn∼Πn|n(i ∈ i⋆(θn)) .
From a computational perspective, the posterior distribution should be easy to sample from

(TS leader) or yield formulas that are efficient to compute after integration (EI and PS leader).
For Gaussian distributions with unit variance, it is efficient to sample from Πn, and we have
explicit formulas (except for the PS leader), e.g.

Eθn∼Πn|n
[
(θn,i − µ⋆

n)+

]
= N

−1/2
n,i f

(√
Nn,i (µ⋆

n − µn,i)
)
, (2.6)

where f(x) = −xΦ(−x) + ϕ(−x) ≈ exp(−x2/2) , Φ and ϕ are the cdf and pdf of N (0, 1) .
Other Bayesian approaches, which have been considered for regret minimization, could

be used to define the leader answer. For example, we could build on the VBOS (Variational
Bayesian Optimistic Sampling) algorithm [O’Donoghue and Lattimore, 2021] that was intro-
duced for regret minimization, and define the VBOS leader as

BVBOS
n ∼ πn with πn ∈ arg max

w∈ΣK

∑
i∈[K]

wi

(
µn,i + (Φ⋆

n,i)−1(− logwi)
)
, (2.7)

where (Φ⋆
n,i)−1 is the inverse of the convex conjugate of the empirical cumulant generating

function. Recall that the cumulant generating function of a distribution κ ∈ DK is Φκ(λ) =
logEX∼κ exp(⟨λ,X −m(κ)⟩) and the convex conjugate of a function f is f⋆(y) = supx{⟨x, y⟩ −
f(x)} . While there are no explicit formulas for πn , it is the solution of a concave maximization

43



A Pedagogical Example: Gaussian with Known Variances

problem, which is computationally tractable so long as each Φn,i is readily accessible (which is
the case for Gaussian distributions).

Regret minimization approach The terminology Top Two was first used to describe the TTTS
algorithm, which arose as an adaptation of Thompson sampling to best arm identification in
multi-armed bandit models [Russo, 2016]. In the above choices of leader answer, we recognize
other regret-minimization algorithms, e.g.UCB, EI, IMED, VBOS. Based on those remarks, we
can see that: the Top Two method can be used as a generic wrapper to convert any regret minimization
algorithm into a best arm identification strategy.

Let Alg be a regret minimization algorithm which is independent of the horizon n . The
Alg leader [Jourdan and Degenne, 2023] is defined as the sampling recommendation of Alg at
time n (i.e. given the history Fn ). While this allows us to design of many Top Two algorithms,
there are Top Two algorithms that do not fall into this category, e.g. PS and EB leaders.

2.2.2 Challenger Answer

Based on the intuitive GLR-based sampling rule, the challenger answer should be taken as
an alternative (or confusing) answer that challenges our belief that the leader is a correct
answer, i.e. an arm that might have a higher mean. There are many ways to define it, both with
a frequentist or a Bayesian approach, and we summarize some of them in Table 2.2. When
the aim is to design an asymptotically ( β-)optimal algorithm, the choice of the challenger
becomes quite restrictive. Since we know that there exists a unique (resp. β-)optimal allocation
w⋆(ν) (resp. w⋆

β(ν) ), the challenger should be chosen to ensure convergence towards those
allocations, without computing them explicitly. While the leader should identify i⋆ , the choice
of the challenger should optimally balance between all the remaining arms [K] \ {i⋆} .

Frequentist approach With a frequentist perspective, one can consider the most confusing
alternative answer compared to the leader answer. The TC challenger [Shang et al., 2020]
chooses the arm with minimal empirical transportation cost compared to the leader, i.e. CTC

n ∈
arg mini ̸=Bn

Wn(Bn, i) .
As mentioned above, the TC challenger might be too greedy when no additional exploration

is enforced (implicitly or explicitly) in the choice of the leader. Similarly, as for frequentist
choices of leader, optimism can be used by adding a bonus to the empirical transportation
cost, i.e. our belief that the leader answer is the best arm will be larger than suggested by the
observations. There are several ways to define the bonus. To foster exploration implicitly, the
bonus should penalize arms that are sampled the most. Intuitively, the penalization should be
large enough to cope with the randomness of the empirical transportation cost (i.e. be upper
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Table 2.2 – Choices for the challenger answer given a leaderBn: TC (Transportation Cost) (T3C in Shang
et al. [2020]), TCI (TC Improved) (EB-TCI in Jourdan et al. [2022]), KKT (Karush-Kuhn-Tucker) (TS-
KKT(ρ) in You et al. [2023], RS (Re-Sampling) (TTTS in Russo [2016]), PPS (Posterior PS) (TS-PPS
in You et al. [2023]), EI (Expected Improvement) (TTEI in Qin et al. [2017]), PS (Probability Sampling)
(TTPS in Russo [2016]).

Definition Approach Computational requirements
CTC

n ∈ arg mini ̸=Bn
Wn(Bn, i) Frequentist Efficient empirical TC

CTCI
n ∈ arg mini ̸=Bn

{Wn(Bn, i) + logNn,i} Frequentist Efficient empirical TC
CKKT

n ∈ arg mini ̸=Bn
{Wn(Bn, i) Frequentist Efficient empirical TC

−ρ log (1/Nn,Bn + 1/Nn,i) /n} with ρ > 0
CRS

n ∈ arg maxi∈[K] θn,i Bayesian Highly efficient sampler Πn

with θn ∼ Πn until Bn /∈ i⋆(θn)
CPPS

n ∼ (pn,i)i∈[K] with pn,Bn = 0 and Bayesian Efficient approximation PΠn|n
pn,i ∝ Pθn∼Πn|n (θn,i > θn,Bn)

CEI
n ∈ arg maxi ̸=Bn

Eθn∼Πn|n [(θn,i − θn,Bn)+] Bayesian Efficient approximation EΠn|n
CPS

n ∈ arg maxi ̸=Bn
Pθn∼Πn|n(i ∈ i⋆(θn)) Bayesian Efficient approximation PΠn|n

confidence bound), yet not too large to prevent the choice of the challenger answer from
being close to the uniform one. Using concentration inequalities, we can show that, with high
probability, ∣∣∣∣√Wn(i, j) −

√
C(i, j; ν,Nn)

∣∣∣∣ = O(
√

logn) ,

hence it is natural to use a logarithmic penalization. Based on those considerations and in-
spired by the IMED algorithm, the TCI challenger [Jourdan et al., 2022] chooses CTCI

n ∈
arg mini ̸=Bn

{Wn(Bn, i) + logNn,i} . A slightly different choice was made by You et al. [2023]
with the KKT challenger, i.e. CKKT

n ∈ arg mini ̸=Bn

{
Wn(Bn, i) − ρ

n log (1/Nn,Bn + 1/Nn,i)
} .

While the Top Two terminology was introduced in Russo [2016], the first sampling rule to
have a Top Two structure is the greedy sampling strategy in LUCB1 [Kalyanakrishnan et al.,
2012], which selects the EB leader and the UCB challenger, i.e. CUCB

n ∈ arg mini ̸=Bn
Un,i . Then,

it samples them both. Instead of using the GLR stopping rule, LUCB1 stops when the LCB
(lower confidence bound) of the leader exceeds the UCB of the challenger.

Bayesian approach Using a Bayesian perspective, one can re-sample vectors from the posterior
distribution until the leader is not among the arms with the highest mean, i.e.we are sampling
with rejection. The RS challenger [Russo, 2016] is based on this resampling strategy, i.e. CRS

n ∈
arg maxi∈[K] θn,i with θn ∼ Πn untilBn /∈ i⋆(θn) . Given that Πn concentrates towards the Dirac
in {µ} , it will become computationally expensive to sample until Bn /∈ i⋆(θn) when Bn = i⋆
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(since the probability of this event converges towards zero). Therefore, the sampler should be
highly efficient for the RS challenger to be tractable for large time n .

Other choices of challenger have been proposed with a Bayesian flavor. The EI chal-
lenger [Qin et al., 2017] chooses an arm with the highest expectation (for the posterior) of
improving upon the leader answer, i.e. CEI

n ∈ arg maxi ̸=Bn
Eθn∼Πn|n [(θn,i − θn,Bn)+] . Given

the posterior distribution defined in Section 2.2.1, we have

Eθn∼Πn|n [(θn,i − θn,Bn)+] =
√

1/Nn,Bn + 1/Nn,if

 µn,Bn − µn,i√
1/Nn,Bn + 1/Nn,i

 , (2.8)

where f(x) = −xΦ(−x) + ϕ(−x) ≈ exp(−x2/2) , Φ and ϕ are the cdf and pdf of the stan-
dard normal distribution. The PS challenger [Russo, 2016] returns an arm that has the high-
est probability (for the posterior) of having the highest mean (excluding Bn ), i.e. CPS

n ∈
arg maxi ̸=Bn

Pθn∼Πn|n(i ∈ i⋆(θn)) . The PPS challenger [You et al., 2023] samples an arm pro-
portionally to the probability (for the posterior) that its mean exceeds the one of the leader,
i.e.BPPS

n ∼ (pn,i)i∈[K] with pn,Bn = 0 and pn,i ∝ Pθn∼Πn|n (θn,i > θn,Bn) .
Similarly, we could define other Bayesian challenger answers. For example, a VBOS chal-

lenger could ne defined as CVBOS
n ∼ (π̃n,i)i∈[K] with π̃n,Bn = 0 and π̃n,i = πn,i/(1 − πn,Bn)

where πn is the VBOS policy [O’Donoghue and Lattimore, 2021] defined as in (2.7).

Why will the allocation be balanced optimally ? Assume that the leader answer identifies
the best arm, i.e.Bn = i⋆ for n large enough. Given the posterior distribution defined in
Section 2.2.1, we can approximately show that, for n large enough,

∀i ̸= i⋆, Pθn∼Πn|n(i ∈ i⋆(θn) \ {i⋆}) = Pθn∼Πn|n(i ∈ i⋆(θn)) ≈ Pθn∼Πn|n (θn,i > θn,i⋆) .

A crucial step in the analysis of Bayesian approach for the challenger is to control the prob-
ability that the drawn vector is such that i⋆ is believed to be worse than another arm i ,
i.e. Pθn∼Πn|n (θn,i > θn,i⋆) . Therefore, we need both concentration results (i.e. upper bounds)
and anti-concentration results (i.e. lower bounds), the former being often easier to derive than
the latter. Qin et al. [2017] showed that Pθn∼Πn|n (θn,i > θn,i⋆) ≈ exp(−Wn(i⋆, i)) for Gaussian
distributions with unit variance. Directly using (2.8), we see that Eθn∼Πn|n [(θn,i − θn,i⋆)+] ≈
exp(−Wn(i⋆, i)) . Asymptotically, this implies that the Bayesian approach for the challenger
will coincide with the TC challenger.

Similarly, all the frequentist challengers proposed above are approximately equivalent to
the TC challenger, except for the UCB challenger that is an asymptotically sub-optimal choice.
Therefore, it is enough to understand why the TC challenger balances optimally between the
remaining arms [K] \ {i⋆} .
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Let us assume that there is sufficient exploration to ensure that µn ≈ µ for n is large enough.
Let wn = Nn/(n− 1) ∈ ΣK be the empirical proportions. Then, we have

Wn(i⋆, i) ≈ (n− 1)C(i⋆, i, ν, wn) hence Cn ∈ arg min
i ̸=i⋆

C(i⋆, i, ν, wn) .

At this point, we need to make an assumption as regards the choice In ∈ {i⋆, Cn} , i.e. the target
allocation over arms that will be discussed in Section 2.2.3. For the sake of exposure, we discuss
the fixed design of sampling the leader a fixed fraction β ∈ (0, 1) of the time, hence wn,i⋆ ≈ β .
Asymptotically, the empirical proportions will reach the β-equilibrium, i.e. wn ≈ w⋆

β(ν) , which
is the unique allocation w ∈ ΣK with wi⋆ = β such that

∀i ̸= i⋆, C(i⋆, i, ν, w) = T ⋆
β (ν)−1 .

To see that, we can suppose towards contradiction that there exists ε > 0 and i ̸= i⋆ , such
that wn,i > w⋆

β(ν)i + ε . Then, there exists j /∈ {i, i⋆} such that wn,i < w⋆
β(ν)i − ε , and we

can show that C(i⋆, i, ν, wn) > C(i⋆, j, ν, wn) by using the monotonicity of transportation costs
as a function of their allocation. Intuitively, an arm that overshoots its β-optimal allocation
will cease to be sampled until it gets close enough to it. By formalizing this intuition, we can
show that the empirical allocation converges towards the β-optimal allocation. Therefore, by
going back to the GLR stopping rule, we have τδ ≲ T ⋆

β (ν) log(1/δ) which yields asymptotic
β-optimality (see Section 1.4.2).

To reach asymptotic optimality, we should ensure that the best arm is sampled with the
optimal proportion, i.e. wn,i⋆ ≈ β⋆ = w⋆(ν)i⋆ . This was one of the main open problems for Top
Two algorithms until it was solved recently by You et al. [2023] (see Section 2.2.3).

2.2.3 Target Allocation Over Arms

To define the target allocation over arms, we leverage the fact that there is no underlying
structure and that answers are arms, hence it is enough to collect observations from an arm
In ∈ {Bn, Cn} . Conditioned on the leader/challenger pair (Bn, Cn) , defining a target allocation
over those two arms is equivalent to defining a target for the leader Bn , which we will denote
by βn(Bn, Cn) ∈ [0, 1] . A running average of those targets represents the fraction of time the
leader Bn should be pulled when selecting (Bn, Cn) as the leader/challenger pair.

Fixed design approach While they are doomed to be sub-optimal, choosing the target alloca-
tion according to a fixed design arose out of convenience until a provably better choice was dis-
covered. The first approach is to fix the target allocation to a given proportion β ∈ (0, 1) [Russo,
2016], i.e. βn(Bn, Cn) = β for all n . While this design will be at most asymptotically β-optimal
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(i.e. reaching T ⋆
β (ν) ), it enjoys good empirical performance on most instances for the moderate

value of δ . Theoretically, the fixed design is near optimal and, for β = 1/2 , it is at most twice
worse than the asymptotic optimal algorithm, i.e. T ⋆

1/2(ν) ≤ 2T ⋆(ν) . LUCB1 [Kalyanakrishnan
et al., 2012] pulls both arms, which approximately corresponds to taking β = 1/2 .

While considering a fixed β has some benefits, it has the main weakness of being agnostic to
the considered challenger. To cope with this limitation while constraining the design, another
natural choice is to pull the least sampled arm, i.e. βn(Bn, Cn) = 1 (Nn,Bn ≤ Nn,Cn) . For
Gaussian with unit variance, this is equivalent to the best challenger heuristic policy (e.g. BC
[Garivier and Kaufmann, 2016, Ménard, 2019]) that selects the arm with the largest gradient
of the empirical transportation cost. It is also equivalent to taking the arm which, if sampled,
increases the empirical transportation cost the most would the estimator µn be unchanged
(e.g. greedy choice in LinGapE [Xu et al., 2018]), i.e.

arg min
i∈{Bn,Cn}

Nn,i = arg max
i∈[K]

C(Bn, Cn; νn, Nn + 1i) = arg max
i∈[K]

∂C(Bn, Cn; νn, Nn)
∂wi

,

where 1i = (1 (j = i))j∈[K] and ties are broken arbitrarily at random. Asymptotically, the BC-TE
algorithm [Lee et al., 2023] is equivalent to using the TS leader and the TC challenger with
this rule, even though it is not a Top Two algorithm per se. Lee et al. [2023] shows that BC-TE
achieves another notion of asymptotic near-optimality, which is problem-dependent instead of
being problem-independent as β-optimality. It involves a characteristic time T (ν) defined as

T (ν)−1 = sup
w∈ΣK ,

w(2)
wi⋆ +w(2)

=γ

min
i ̸=i⋆

C(i⋆, i; ν, w) , (2.9)

where (2) is the second best arm and γ is the best ratio between the best arm and the second
best arm to distinguish them, i.e.

∂C(i⋆, (2); ν, (1 − γ)1i⋆ + γ1(2))
∂wi⋆

=
∂C(i⋆, (2); ν, (1 − γ)1i⋆ + γ1(2))

∂w(2)
. (2.10)

For Gaussian distribution with unit variance, it simplifies to γ = 1/2 .
Even though fixed designs reach asymptotic near-optimality, finding the optimal design for

the target allocation was an active area of research.

Optimal design IDS You et al. [2023] propose the IDS (Information Directed Selection)
choice for the target allocation, defined as βn(Bn, Cn) with βn(i, j) = 1/2 when µn,i ≤ µn,j and
otherwise

βn(i, j) =
Nn,i

∂C(i,j;νn,Nn)
∂wi

Wn(i, j) = Nn,iK−
inf(νn,i, ui,j(νn, Nn))

Wn(i, j) , (2.11)
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where we used Lemma 2.3 for the second equality with ui,j(νn, Nn) is a minimizer realizing
Wn(i, j) defined therein. The proof of Lemma 2.3 is detailed in Appendix B.2.

Lemma 2.3. Let ui,j(ν, w) ∈ arg minu∈R{wiK−
inf(νi, u) + wjK+

inf(νj , u)} be a minimizer of
C(i, j; ν, w) for all i ̸= j . Then, for all j ̸= i⋆ ,

∂C(i⋆, j; ν, w)
∂wi⋆

= K−
inf(νi⋆ , ui⋆,j(ν, w)) and ∂C(i⋆, j; ν, w)

∂wj
= K+

inf(νj , ui⋆,j(ν, w)) . (2.12)

For Gaussian with unit variance, we have

βn(i, j) = Nn,j/(Nn,i +Nn,j) if µn,i > µn,j and βn(i, j) = 1/2 otherwise . (2.13)

Crucially, the IDS proportions are independent of the empirical means for Gaussian with
known variance.

The IDS proportions are obtained by simplifying the dual formulation of the optimization
problem T ⋆(ν)−1 = maxw∈ΣK

mini ̸=i⋆ C(i⋆, i; ν, w) which can be seen as the following convex
optimization problem

T ⋆(ν)−1 = max

ϕ |
∑

i∈[K]
wi = 1, ∀i ∈ [K], wi ≥ 0, ∀i ̸= i⋆, ϕ− C(i⋆, i; ν, w) ≤ 0

 . (2.14)

Lemma 2.4 gives a necessary and sufficient condition for optimality in (2.14), which
features a dual allocation vector γ ∈ ΣK−1 . Intuitively, the dual variable γi should be
thought of as the conditional probability of selecting arm i as challenger given that the
leader is i⋆ . Moreover, β(i⋆, i; ν, w) represents the conditional probability of pulling arm
i given that the leader/challenger pair of answers is (i⋆, i) . Therefore, it is intuitive to take
βn(i, j) = β(i⋆, i; νn, Nn) . The proof of Lemma 2.4 is detailed in Appendix B.3, and it was
known in the literature (e.g. Proposition 4 in Qin and You [2023]).

Lemma 2.4. A feasible solution (ϕ,w) is optimal for (2.14) if and only if ϕ = T ⋆(ν)−1 and there
exists a dual variable γ ∈ ΣK−1 such that, γi(ϕ− C(i⋆, i; ν, w)) = 0 for all i ̸= i⋆ , and

wi =


∑

i ̸=i⋆ γiβ(i⋆, i; ν, w) if i = i⋆

γi (1 − β(i⋆, i; ν, w)) otherwise
, where β(i⋆, i; ν, w) =

wi⋆
∂C(i⋆,i;ν,w)

∂wi⋆

C(i⋆, i; ν, w) .
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Optimal design BOLD In the fixed-budget setting, Chen and Ryzhov [2023] proposed the
BOLD (Balancing Optimal Large Deviations) choice for the target allocation. Adapted to the
fixed-confidence setting (by swapping the arguments in the KL), BOLD selects

In = Bn if
∑

i ̸=Bn

K−
inf(νBn , uBn,i(νn, Nn))

K+
inf(νi, uBn,i(νn, Nn))

> 1 and In = Cn otherwise , (2.15)

where ui,j(ν, w) is defined in Lemma 2.3. For Gaussian distributions with unit variance, the
BOLD choice can be written as

In = Bn if N2
n,Bn

<
∑

i ̸=Bn

N2
n,i , and In = Cn otherwise , (2.16)

which coincides with the approach proposed in Shin et al. [2018] for the fixed-budget setting.
Lemma 2.5 gives a necessary and sufficient condition for optimality in (2.14). While it still

features the information balance from Lemma 2.4, it introduces the concept of overall balance
between arms. Since the l.h.s. of the overall balance is a decreasing function of wi⋆ , it is intuitive
to sample the leader when the empirical version of the l.h.s. is larger than 1 . The proof of
Lemma 2.5 is detailed in Appendix B.4, and it was known in the literature (e.g. Proposition 3
in Qin and You [2023]).

Lemma 2.5. An allocation w is optimal for T ⋆(ν)−1 if and only if it satisfies

Information balance: ∀i ̸= i⋆, C(i⋆, i; ν, w) = T ⋆(ν)−1 ,

Overall balance:
∑
i ̸=i⋆

K−
inf(νi⋆ , ui⋆,i(ν, w))

K+
inf(νi, ui⋆,i(ν, w))

= 1 ,

where ui⋆,i(ν, w) is defined in Lemma 2.3.

Recall that the dual variable γi in Lemma 2.4 represents the conditional probability of
selecting arm i as challenger given that the leader is i⋆ . The proof of Lemma 2.4 implies that it
is inversely proportional to ∂C(i⋆,i;ν,w)

∂wi
.

Compared to IDS, BOLD is independent of the challenger answer. Compared to IDS, BOLD
is a binary decision (i.e. βn(Bn, Cn) ∈ {0, 1} ). This makes the proof of sufficient exploration
harder (see Section 2.3.3), and the generalization to linear bandits less clear (see Section 8.2.1
of Chapter 8).

Recently, Bandyopadhyay et al. [2024] show that combining the leader/challenger pair
EB-TC (or EB-TCI) with the optimal design BOLD yields an asymptotically optimal BAI al-
gorithm for any one-parameter exponential family of distributions Dexp . Their algorithms
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(AT2 and IAT2) rely on an additional polynomial forced exploration step. Compared to other
lower bound-based algorithms (see Section 1.4.3), the Top Two approach is amenable to anal-
ysis without a forced exploration step since it ensures sufficient exploration provided some
properties hold on the leader, the challenger and the target (see Section 2.3.3). We conjecture
that the BOLD target also satisfies such a property. When studying the Top Two approach
(without forced exploration) for one-parameter exponential family [Jourdan et al., 2022], an
assumption on the tail distributions (e.g. sub-exponential distributions) is needed to prove
sufficient exploration.

2.2.4 Mechanism to Reach the Target Allocation

Equipped with a target βn(Bn, Cn) ∈ [0, 1] for the leader, we need a mechanism to reach this
target. When βn(Bn, Cn) ∈ {0, 1} , one can simply sample the corresponding arm. When
βn(Bn, Cn) ∈ (0, 1) , one needs to convert a proportion βn(Bn, Cn) ∈ (0, 1) into a decision to
pull either In = Bn or In = Cn .

Randomized approach Historically, the TTTS algorithm used randomization to make this
choice. Namely, it will set In = Bn with probability βn(Bn, Cn) , and set In = Cn otherwise,
i.e. P|n(In = i | (Bn, Cn) = (i, j)) = βn(i, j) and P|n(In = j | (Bn, Cn) = (i, j)) = 1 − βn(i, j) .
Therefore, we have

P|n(In = i) =
∑
j ̸=i

βn(i, j)P|n((Bn, Cn) = (i, j)) +
∑
j ̸=i

(1 − βn(j, i))P|n((Bn, Cn) = (j, i)) . (2.17)

Tracking approach Inspired by the success of C-Tracking [Garivier and Kaufmann, 2016]
for Track-and-Stop, in Jourdan and Degenne [2023] we replace this randomization step with a
tracking step. Given that the target allocation is defined as conditioned on the leader/challenger
pair, we useK(K − 1) independent tracking procedures, i.e. one per pair (i, j) ∈ [K]2 such that
i ̸= j . As we will see, the tracking procedure is relevant mostly when the leader/challenger
pair is deterministic. We do not study tracking for randomized leader/challenger choices.

All the following notations use the event that the leader/challenger pair is (i, j) , which is ob-
tained by a deterministic mechanism (e.g. EB-TCI). Let Tn(i, j) :=

∑
t∈[n−1] 1 ((Bt, Ct) = (i, j))

be the number of times it occurs, the averaged target allocation of the leader be β̄n(i, j) :=
Tn(i, j)−1∑

t∈[n−1] 1 ((Bt, Ct) = (i, j))βt(i, j) and N i
n,j :=

∑
t∈[n−1] 1 ((Bt, Ct) = (i, j), It = j)

be the number of pulls of arm j when i is the leader. Then,

In = Cn if NBn
n,Cn

≤ (1− β̄n+1(Bn, Cn))Tn+1(Bn, Cn) , and In = Bn otherwise . (2.18)

Using Theorem 6 in Degenne et al. [2020b] for each tracking procedure yields Lemma 2.6.
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Lemma 2.6. Using the K(K − 1) tracking procedures as in (2.18), we obtain that −1/2 ≤
N i

n,j − (1 − β̄n(i, j))Tn(i, j) ≤ 1 for all n > K , all i ∈ [K] , all j ̸= i .

In Jourdan et al. [2023b], we proposed the tracking procedure in (2.18) to cope for an adap-
tive target which depends on {Bn, Cn} . When the target is agnostic to the leader/challenger
pair, i.e. βn(Bn, Cn) = β , it is sufficient to define K tracking procedure, i.e. one per possible
leader. In Jourdan and Degenne [2023], we set

In = Bn if NBn
n,Bn

≤ β
∑

i ̸=Bn

Tn+1(Bn, i) , and In = Cn otherwise . (2.19)

Similarly, using Theorem 6 in Degenne et al. [2020b], we obtain Lemma 2.7.

Lemma 2.7. Using the K tracking procedures as in (2.19), we obtain that −1/2 ≤ N i
n,i −

β
∑

j ̸=i Tn(i, j) ≤ 1 for all n > K and all i ∈ [K] .

Deterministic or randomized Among the four choices to define a Top Two sampling rule,
the mechanism to reach the target allocation has the least impact by far. Empirically, we
observe very little difference when using one over the other. Except for a fully deterministic
Top Two algorithm, In is a random variable due to the randomness in Bn , Cn, or the random
selection between both. It is direct to show that Nn,i − E[Nn,i] is a martingale with mean 0 and
sub-Gaussian increments. Therefore, with high probability, we have ∥Nn − E[Nn]∥∞ = Õ(

√
n).

Using a fully deterministic Top Two sampling rule over a randomized one is motivated
by practical and theoretical reasons. First, the practitioner might be only willing to use a
deterministic algorithm. While this holds for some specific applications, this is not the case
in clinical trials. Second, in the analysis, it is easier to control deterministic counts since it
removes the need for martingale arguments to cope with the randomness of the algorithm
itself (i.e. random counts). Therefore, it simplifies the non-asymptotic analysis.

2.2.5 Naming Convention

Since a Top Two algorithm is defined by four choices and each one has several possibilities, there
is a combinatorial number of possible instances. To ease the understanding, we propose to use
{leader}-{challenger}-{target} as naming convention, which extends the ones from Jourdan
et al. [2022] and You et al. [2023]. Importantly, the fourth choice is not mentioned since it is a
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direct consequence of the three previous choices. Namely, we use randomization when either
the leader or the challenger is randomized. Otherwise, we use the tracking (2.19) for fixed
design β , and the tracking (2.18) for optimal design IDS. To refer to a pair of leader/challenger
answers (regardless of the target considered), we use {leader}-{challenger} as the naming
convention.

To familiarize the reader with this naming convention, we detail some examples. The
greedy GLR-based sampling rule from Section 2.1.2 refers to EB-TC. As regards the Top Two
algorithms which were introduced with a different naming convention, we explicit mention
their names in this convention: LUCB [Kalyanakrishnan et al., 2012] is (almost) EB-UCB-1/2 ,
TTTS [Russo, 2016] is TS-RS-β , TTPS [Russo, 2016] is PS-PS-β , TTEI [Qin et al., 2017] is EI-EI-β
, T3C [Shang et al., 2020] is TS-TC-β , TTUCB [Jourdan and Degenne, 2023] is UCB-TC-β , AT2
(resp. IAT2) [Bandyopadhyay et al., 2024] is EB-TC-BOLD (resp. EB-TCI-BOLD) with forced
exploration.

2.2.6 A Simple, Interpretable and Generalizable Approach

There are many reasons behind the success of the Top Two algorithms. For statisticians, the Top
Two algorithms are appealing since they simultaneously have good theoretical guarantees and
empirical performance. Throughout this thesis, we will illustrate those two characteristics with
theorems and experiments. For practitioners, the Top Two algorithms are attractive since they
are simple, interpretable, generalizable, and versatile. While the versatility of this approach will
be made clear in Section 5.4 of Chapter 5, we can already motivate the first three characteristics.

Simple The Top Two approach (see Algorithm 2.1) is defined by four choices having a simple
intuition. While the leader answer aims at identifying i⋆ , the challenger answer attempts to
confuse the belief of the agent that the leader is i⋆ . The target corresponds to the fraction of
samples we want to allocate to the leader answer. Then, we need a mechanism to convert this
targeted proportion into an actual arm to pull among the leader and challenger.

As a direct consequence of its simplicity, the Top Two approach is also easy to implement
(four functions to code). The computational (and memory) cost of Top Two approach depends
on the choices of the leader answer (see Table 2.1) and the challenger answer (see Table 2.2).
We will not delve into the pros and cons of each choice. Importantly, the EB-TC algorithm
has no additional computational cost since the EB leader is the recommendation rule, and the
TC challenger is already computed by the GLR stopping rule. However, Bayesian approaches
require either an efficient sampler (TS leader, RS challenger when highly efficient) or explicit
formulas (EI leader and EI challenger).
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Interpretable Since we can grasp the role of each of those choices, the sampling strategy
enforced by a Top Two approach is interpretable. While additional samples are always collected
to gather more information, the status of the next arm to be pulled is clear with the Top Two
approach. It is believed to be a good arm when sampling the leader and a sub-optimal arm
when sampling the challenger.

In domains fraught with ethical implications such as phase III of clinical trials, it is possible
to enforce some constraints on the sampling strategy a priori. For example, a Top Two approach
with fixed design β will attempt to cure a fraction β of the volunteers. Therefore, the target β
could be chosen by an ethical board a priori.

Generalizable When describing the possible instances for each choice (leader, challenger,
and target), we used a generic notation that is amenable to changes in the goals and assump-
tions with limited modifications. For example, the empirical transportation costs are easily
modified when considering BAI for Gaussian with unknown variance (Chapter 3) or bounded
distributions (Chapter 4). Similarly, it is direct to adapt the Top Two approach to tackle ε-BAI
(Chapter 5). Finally, the Structured Top Two generalizes the Top Two approach for structured
settings (e.g. linear bandits).

2.3 Asymptotic Sample Complexity Upper Bound

In BAI for Gaussian distributions with known variance, Theorem 2.8 shows the asymptotic
( β-)optimality of many Top Two sampling rules when combined with the GLR stopping
rule. We present a unified asymptotic analysis of the Top Two approach, which identifies
desirable properties on the choices of the leader and challenger answers to achieve asymptotic
( β-)optimality. The proof is detailed in the rest of this section.

Theorem 2.8. Let (β, δ) ∈ (0, 1)2 . Combined with the GLR stopping rule (2.2) using the
threshold (2.3), the Top Two sampling rule (Algorithm 2.1) using (i) any leader in Table 2.1,
(ii) any challenger in Table 2.2, (iii) the fixed design β or the optimal design IDS (2.11), and
(iv) randomization (or tracking for a deterministic leader/challenger pair, see Section 2.2.4) yields
an algorithm which is δ-correct and satisfies that, for all ν ∈ DK with mean µ ∈ RK such that
∆min(µ) := mini ̸=j |µi − µj | > 0 ,

[IDS] lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ T ⋆(ν) and [fixed β] lim sup

δ→0

Eν [τδ]
log(1/δ) ≤ T ⋆

β (ν) ,
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Distinct means Restricting to instances such that ∆min(µ) > 0 (which implies |i⋆(µ)| = 1 ) is
an uncommon assumption in BAI. However, prior Top Two algorithms [Russo, 2016, Qin et al.,
2017, Shang et al., 2020] have been analyzed on those instances. Our generic analysis reveals
that it is solely used to prove sufficient exploration (see Section 2.3.3). Experiments suggest
that the greedy EB-TC is the only Top Two algorithm that has poor empirical performance
when ∆min(µ) = 0 and |i⋆(µ)| = 1 . For ε-BAI with ε > 0 (see Chapter 5), the EB-TCε will not
suffer from this issue thanks to the implicit exploration of the TCε challenger. As mentioned in
Section 2.1.2, the greediness of EB-TC in BAI can be alleviated by considering randomization or
optimism that fosters implicit exploration. In the asymptotic analysis, we will not formalize
this concept explicitly with sufficient property on the leader or the challenger. However, for
the non-asymptotic analysis of the UCB-TC-β algorithm (see Section 2.4), the UCB leader has
the property of identifying the best arm except for logarithmic number of rounds with high
probability (Lemma 2.27).

BeyondGaussian distributions Theorem 2.8 can be readily adapted for Gaussianwith known
homogeneous (non-unit) variance σ2 > 0 . Moreover, it also holds for σ-sub-Gaussian random
variables thanks to direct adaptations of concentration results. However, it is ( β-)optimal in a
distribution sense only for Gaussian distributions.

While it is an open problem to analyze IDS formore general distributions thanGaussianwith
known variance, our analysis of the fixed design β can be generalized. In Jourdan et al. [2022],
we show the asymptotic β-optimality of deterministic Top Two algorithms for one-parameter
exponential family of sub-exponential distributions, as well as the one of randomized Top Two
algorithms for Bernoulli distributions. In Chapter 3, we prove the asymptotic β-optimality
of deterministic Top Two algorithms for Gaussian distributions with unknown variance. In
Chapter 4, we show the asymptotic β-optimality of deterministic and randomized Top Two
algorithms for bounded distributions.

Proof outline After restating known regularities on the characteristic times (Section 2.3.1),
the asymptotic analysis is split into three parts. In Section 2.3.2, we derive a sufficient condition
on any sampling rule to obtain the desired asymptotic upper bound when combined with the
GLR stopping rule. In Section 2.3.3, we highlight how the Top Two sampling rules are exploring
the arms sufficiently. In Section 2.3.4, we show how the Top Two sampling rules are balancing
the empirical allocation to ensure its convergence towards the ( β-)optimal allocation. In each
step of the analysis, we focus on the analysis of IDS, then highlight how to cope for a fixed
design β with tracking as in (2.19). The asymptotic analysis follows the unified analysis of
Jourdan et al. [2022], which was inspired by Qin et al. [2017] and Shang et al. [2020], then
extended by Jourdan and Degenne [2023] for tracking and by You et al. [2023] for IDS.
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The randomness comes from the observations and, potentially, the use of randomization
in the leader, challenger, or the mechanism to reach the target. Lemma 2.9 is a standard
concentration result of the empirical mean for sub-Gaussian observations, which has been used
for the asymptotic analysis of Top Two algorithms (e.g. Lemma 3 in Qin et al. [2017], Lemma 5
in Shang et al. [2020], Lemmas 5 and 14 in Jourdan et al. [2022]) hence we omit its proof.

Lemma 2.9. There exists two independent sub-Gaussian random variablesWµ andWK such that
almost surely, for all i ∈ [K] and all n such that Nn,i ≥ 1 ,

|µn,i − µi| ≤ Wµ

√
log(e+Nn,i)

Nn,i
and ∥Nn − E[Nn]∥∞ ≤ WK

√
(n+ 1) log(e+ n) .

In particular, any random variable that is polynomial in (Wµ,WK) has a finite expectation.

2.3.1 Characteristic Times

Lemma 2.10 restates some fundamental results on the characteristic time and the optimal
allocation, which were shown by Russo [2016] for any one-parameter exponential family.

Lemma 2.10 ([Russo, 2016]). If i⋆(µ) is a singleton and β ∈ (0, 1) , then w⋆(ν) and w⋆
β(ν) are

singletons, i.e. the optimal allocations are unique, and w⋆(ν)i > 0 and w⋆
β(ν)i > 0 for all i ∈ [K] .

T ⋆
1/2(ν) ≤ 2T ⋆(ν) and with β⋆ = w⋆

i⋆(ν) , T ⋆
β (ν)

T ⋆(ν) ≤ max
{

β⋆

β ,
1−β⋆

1−β

}
. Moreover, for all i ̸= i⋆ ,

T ⋆(ν)−1 = C(i⋆, i; ν, w⋆(ν)) and T ⋆
β (ν)−1 = C(i⋆, i; ν, w⋆

β(ν)) . (2.20)

The functions (κ,w) → C(i, j;κ,w) and κ → i⋆(m(κ)) are continuous. The function κ →
C(i, j;κ, 1K) is continuous with strictly positive value for (i, j) such thatm(κ)i > m(κ)j . The
function w → C(i⋆, i;κ,w) is increasing.

Let ν ∈ DK with mean µ ∈ RK such that i⋆(µ) = {i⋆} . Let β ∈ (0, 1) . Let w⋆ and w⋆
β be

the unique optimal allocation and β-optimal allocation, i.e. w⋆(ν) = {w⋆} and w⋆
β(ν) = {w⋆

β}
where w⋆(ν) and w⋆

β(ν) are the maximizer of T ⋆(ν)−1 and T ⋆
β (ν)−1 defined in Lemma 2.1.

The property (2.20) is a necessary condition for optimality, it means that there is equality
of the transportation cost at the equilibrium, hence is referred to as the information balance [You
et al., 2023]. Another necessary condition for optimality is the overall balance, which means
that the allocations are balancing the contribution of each arm to the transportation cost,
i.e.
∑

i ̸=i⋆
K−

inf(νi⋆ ,u(i⋆,j,ν,w⋆))
K+

inf(νi,u(i⋆,i,ν,w⋆)) = 1 where u(i⋆, j, ν, w⋆) is the minimizer of C(i⋆, i; ν, w⋆) . For
Gaussian distribution with known variance, the overall balance has a convenient expression,
which does not depend explicitly on ν , i.e. (w⋆

i⋆)2 =
∑

i ̸=i⋆ (w⋆
i )2 .
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2.3.2 Asymptotic ( β-)Optimality

The first step of the asymptotic analysis is to show that the convergence towards the ( β-)optimal
allocation is a sufficient condition to obtain asymptotic ( β-)optimality when using the GLR
stopping rule (Lemma 2.11), as discussed in Section 1.4.2.

Convergence time Let γ > 0 and w ∈ Σ̊K . Let us define the convergence time Tγ(w) , which
is a random variable quantifies the number of samples required for the empirical ratios of
allocation (Nn,i/Nn,i⋆)i ̸=i⋆ to stay γ-close to (wi/wi⋆)i ̸=i⋆ forever, i.e.

Tγ(w) := inf
{
T ≥ 1 | ∀n ≥ T, max

i ̸=i⋆

∣∣∣∣∣ Nn,i

Nn,i⋆
− wi

wi⋆

∣∣∣∣∣ ≤ γ

}
. (2.21)

Proven in Appendix B.5, Lemma 2.11 also holds for a broader class of thresholds (see the
asymptotically tight threshold defined therein), whose (n, δ) dependencies is sufficient to ensure
asymptotic ( β-)optimality.

Lemma 2.11. Assume that the sampling rule satisfies that there exists γν > 0 such that: for all
γ ∈ (0, γν ] , Eν [Tγ(w⋆)] < +∞ (resp. Eν [Tγ(w⋆

β)] < +∞ ) with Tγ(w) as in (2.21). Using the
threshold c(n, δ) as in (2.3) in the GLR stopping rule (2.2), this sampling rule yields an algorithm
such that, for all ν ∈ DK with mean µ ∈ RK such that |i⋆(µ)| = 1 ,

lim sup
δ→0

Eν [τδ]
log (1/δ) ≤ T ⋆(ν) (resp. T ⋆

β (ν) ) .

Using Lemma 2.11, the proof of Theorem 2.8 for the optimal design IDS (resp. fixed design
β ) boils down to showing that Eν [Tγ(w⋆)] < +∞ (resp. Eν [Tγ(w⋆

β)] < +∞ ). In Section 2.3.3,
we will show sufficient exploration for all the arms, e.g. mini∈[K]Nn,i ≥

√
n/K for n large

enough. In Section 2.3.4, we will prove that the expectation of the convergence time is finite.

2.3.3 Sufficient Exploration

In this section, we identify properties on the leader (Property 2.14) and the challenger (Prop-
erty 2.15) under which the Top Two algorithm ensures sufficient exploration (Lemma 2.16)

∃N0 s.t. Eν [N0] < +∞, ∀n ≥ N0, min
i∈[K]

Nn,i ≥
√
n/K and arg max

i∈[K]
µn,i = {i⋆} . (2.22)
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Effective leader and challenger For an algorithm to alleviate the under-sampling of some
arms, it should have a strictly positive probability of sampling them. In the Top Two algorithms,
the choice of the arm to pull In is defined by the leader Bn and the challenger Cn . When
there is randomization, it is not trivial to manipulate Bn and Cn . Therefore, we define the
effective leader answer B̂n and the effective challenger answer Ĉn as the answers maximizing the
respective probability of being selected, i.e.

B̂n ∈ arg max
i∈[K]

P|n(Bn = i) and Ĉn ∈ arg max
i ̸=B̂n

P|n(Cn = i|Bn = B̂n) , (2.23)

where Ĉn is defined conditioned on the effective leader B̂n . We assume that ties are broken
uniformly at random. Note that they are fully determined by the mechanisms to choose the
leader and the challenger. When the choices of the leader/challenger pair are deterministic
ones, we have (B̂n, Ĉn) = (Bn, Cn) for all n .

Target allocation A good target allocation should ensure that the allocations are balanced
between arms. Lemma 2.12 states that the target allocation of the least sampled arm in the
effective leader/challenger pair is strictly positive.

Lemma 2.12. There exists βmin > 0 such that, for all n > K , βn(B̂n, Ĉn) ≥ βmin if N
n,B̂n

≤
N

n,Ĉn
, and 1 − βn(B̂n, Ĉn) ≥ βmin otherwise.

Proof. It is direct for fixed design β ∈ (0, 1) by taking βmin = min{β, 1 − β} and for optimal
design IDS by taking βmin = 1/2 respectively. ■

While Lemma 2.12 holds for fixed design β and optimal design IDS, it seems difficult to
prove it for the optimal design BOLD as defined in (2.16). When both the leader and the
challenger are deterministic, we have (B̂n, Ĉn) = (Bn, Cn) . Since Nn,Bn ≤ Nn,Cn implies that
N2

n,Bn
<
∑

i ̸=Bn
N2

n,i , the leader will be sampled if it is the least sampled arm among those
two. However, the condition Nn,Bn > Nn,Cn does not necessarily imply that the challenger
will be sampled with a strictly positive probability. For a randomized leader or challenger, the
situation is even more intricate. We conjecture that the optimal design BOLD satisfies another
type of property to obtain sufficient exploration. As it does not fit perfectly in our unified
analysis, we leave this question for future work. In Bandyopadhyay et al. [2024], the forced
exploration step removes the need to show that the optimal design BOLD ensures sufficient
exploration.
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2.3 Asymptotic Sample Complexity Upper Bound

Proof strategy Given Lemma 2.12, sufficient exploration can be proven if we show that either
B̂n or Ĉn is among the under-sampled arms if some still exist. Before formalizing the properties
required by the leader and challenger pair to ensure sufficient exploration, we introduce the
relevant notation.

Given an arbitrary threshold L ∈ R∗
+ , we define the sampled enough set and its arms with

the highest mean (when not empty) as

SL
n := {i ∈ [K] | Nn,i ≥ L} and I⋆

n := arg max
i∈SL

n

µi , (2.24)

where I⋆
n is a set with potentially multiple values. At time n , SL

n can only be non-empty for
L ≤ n , hence it depends explicitly on n . Assumption 2.13 ensures that I⋆

n is unique. As
mentioned above, this distinct means assumption will only be used for the proof of sufficient
exploration, and it could be liftedwith amore detailed analysis leveraging additional properties
on the leader/challenger pair (e.g. as for UCB-TC-β) or in ε-BAI (thanks to the TCε challenger).

Assumption 2.13. All the arms have distinct means, i.e. ∆min(µ) := mini ̸=j |µi − µj | > 0 .

To prove sufficient exploration, we aim at finding a time N1 with Eν [N1] < +∞ and a
threshold L(n) such that SL(n)

n = [K] for n ≥ N1 , i.e. L(n) =
√
n/K in (2.22). We proceed by

contradiction. The idea is to show that if some arms are still highly under-sampled, then either
B̂n or Ĉn will be mildly under-sampled. Since they have a strictly positive probability of being
sampled (Lemma B.3), this will yield a contradiction by the pigeonhole principle. We define
the highly and the mildly under-sampled sets

UL
n := {i ∈ [K] | Nn,i <

√
L} and V L

n := {i ∈ [K] | Nn,i < L3/4} . (2.25)

The choice of
√
L and L3/4 is arbitrary, and we could take Lα1 and Lα2 with 0 < α1 < α2 < 1 .

Leader answer A good leader should first identify the best arm among the arms that are
sampled enough (Property 2.14). Property 2.14 states that if B̂n is sampled enough, then B̂n

is an arm with highest mean among the sampled enough arms. In Section 2.3.5, we show
Property 2.14 for the EB leader and explain why it also holds for other choices of leader answer
as in Table 2.1.

Property 2.14. There exists L0 with Eν [(L0)α] < +∞ for all α > 0 such that if L ≥ L0 , for all n
such that SL

n ̸= ∅ , B̂n ∈ SL
n implies B̂n ∈ I⋆

n .
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Challenger answer Given a good leader, a good challenger should enforce exploration on the
arms that are not sampled enough yet when the leader does not do it already (Property 2.15).
Property 2.15 states that if some arms are still highly under-sampled, i.e. UL

n ̸= ∅ , then having
sampled B̂n enough implies that Ĉn is mildly under-sampled or has highest true mean among
the sampled enough arms. In Section 2.3.5, we show Property 2.15 for the TC challenger and
explain why it also holds for other choices of challenger answer as in Table 2.2.

Property 2.15. Let B̂n be an effective leader satisfying Property 2.14 and Ĉn the associated effective
challenger. Let J ⋆

n = arg max
i∈V L

n
µi . There exists L1 with Eν [L1] < +∞ such that if L ≥ L1 ,

for all n such that UL
n ̸= ∅ , B̂n /∈ V L

n implies Ĉn ∈ V L
n ∪

(
J ⋆

n \
{
B̂n

})
.

Lemma 2.16 shows (2.22), i.e. all arms are sufficiently explored for n large enough.

Lemma 2.16. Suppose that Assumption 2.13 holds. Using randomization (or tracking for a
deterministic leader/challenger, see Section 2.2.4), a Top Two algorithm with leader and challenger
satisfying Properties 2.14 and 2.15 is such that there exists N0 with Eν [N0] < +∞ such that, for
all n ≥ N0 , mini∈[K]Nn,i ≥

√
n/K and arg maxi∈[K] µn,i = {i⋆} .

The proof of Lemma 2.16 is detailed in Appendix B.6, and the intuition is sketched below.

Proof. Suppose towards contradiction that there are still arms that are sampled less than√
n/K . Combining Properties 2.14 and 2.15, we obtain that either the effective leader or the

effective challenger is still an undersampled arm. Using Lemma 2.12, we know that there is a
strictly positive probability of sampling the least pulled arm among those two arms. Therefore,
after a long enough time, this undersampled arm will be sampled enough. Repeating this
argument, it is possible to show that all arms are sampled enough, otherwise we will have a
contradiction. ■

2.3.4 Convergence Towards the ( β-)Optimal Allocation

In this section, we identify properties on the leader (Property 2.17) and the challenger (Prop-
erty 2.20) under which we prove that the Top Two algorithm ensures that the convergence time
has finite expectation (Lemma 2.21), i.e.

∃γν > 0, ∀γ ∈ (0, γν ], Eν [Tγ(w⋆)] < +∞ (resp. Eν [Tγ(w⋆
β)] < +∞ ) , (2.26)

with Tγ(w) as in (2.21). In the following, we suppose that (2.22) holds, i.e. all arms are suffi-
ciently explored for n large enough. While Lemma 2.16 shows it under certain conditions, we
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2.3 Asymptotic Sample Complexity Upper Bound

“forget” them to highlight specific properties and show that Assumption 2.13 is not needed
once we have sufficient exploration. Since there is a unique best arm i⋆ , (2.22) implies that
arg max

i∈S

√
n/K

n

µi = {i⋆} for all n ≥ N0 , with SL
n as in (2.24) and N0 as in (2.22).

Leader answer A good leader should simply identify the best arm i⋆ . Property 2.17 states
that the probability that the leader is not the unique best arm vanishes. In Section 2.3.5, we
show Property 2.17 for the EB leader and explain why it also holds for other choices of leader
answer as in Table 2.1.

Property 2.17. Suppose that (2.22) holds. Let g1 be a function s.t.∑t∈[n−1] g1(t) =+∞ O(n1−α1)
with α1 > 0 . There exists N1 with Eν [N1] < +∞ such that, for all n ≥ N1 , P|n(Bn ̸= i⋆) ≤
g1(n).

Target allocation A good target allocation should ensure that the allocations are ( β-)optimally
balanced between arms. For the optimal design IDS, it means that the overall balance equation
is approximately satisfied by the empirical allocation.

Lemma 2.18. Suppose that (2.22) holds. Assume that the leader satisfies Property 2.17. Let γ > 0
. There exists N2 with Eν [N2] < +∞ such that, for all n ≥ N2 ,

[IDS]
1

(n− 1)2

∣∣∣∣∣∣N2
n,i⋆ −

∑
j ̸=i⋆

N2
n,j

∣∣∣∣∣∣ ≤ γ and [fixed β] |Nn,i⋆/(n− 1) − β| ≤ γ .

For fixed design β ∈ (0, 1) , it is straightforward to see that Lemma 2.18 holds both when
using randomization (or tracking for a deterministic leader/challenger). For the optimal
design IDS defined in (2.13), we can also show that Lemma 2.12 holds when using tracking
or randomization. Intuitively, the property is satisfied if the increments are small enough for
their summation to be small enough. Using informally the differential d notation, we have
dNn,i⋆ = βn(i⋆, Cn) and dNn,j = 1 (j = Cn) (1 − βn(i⋆, Cn)) . Therefore, we obtain

d

N2
n,i⋆ −

∑
j ̸=i⋆

N2
n,j

 = 2Nn,i⋆βn(i⋆, Cn) − 2Nn,Cn(1 − βn(i⋆, Cn)) = 0 ,

where the last equality holds since βn(i⋆, j) = Nn,j/(Nn,i⋆ + Nn,j) as µn,i⋆ > maxi ̸=i⋆ µn,i .
Summing those small increments will yield the result. The proof of Lemma 2.18 is detailed
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in Appendix B.7 for randomization (or tracking for a deterministic leader/challenger, see
Section 2.2.4).

The optimal design BOLD in (2.16) is precisely defined to ensure that |N2
n,i⋆ −

∑
j ̸=i⋆ N2

n,j |
remains small. Therefore, it is straightforward to show that the property of IDS in Lemma 2.18
also holds for BOLD. The convergence towards the optimal allocation when using BOLD has
been shown in Bandyopadhyay et al. [2024]. In addition to holding for any one-parameter
exponential family of distributions, their analysis greatly differs from the one presented in
this thesis. The asymptotic path followed by the algorithm is described by a series of ordinary
differential equations satisfied by limiting fluid dynamics of the allocations.

Lemma 2.19 is a corollary of Lemma 2.18: the best arm is sampled linearly, and the empirical
reweighted overall balance equation is approximately satisfied when using the optimal design
IDS. The proof of Lemma 2.19 is detailed in Appendix B.8.

Lemma 2.19. Suppose that (2.22) holds. Let γ > 0 . Using optimal design IDS, there exists N4

with Eν [N4] < +∞ such that for all n ≥ N4 , (4
√

2(K − 1))−1 ≤ Nn,i⋆/(n − 1) ≤ 3/4 and
|1 −

∑
i ̸=i⋆ (Nn,i/Nn,i⋆)2 | ≤ γ .

Challenger answer Given a good leader, a good challenger should balance each sub-optimal
arm with the ( β-)optimal allocation. In other words, when the ratio of their empirical propor-
tions exceeds the ratio of their ( β-)optimal allocation, this arm should have a small probability
of being sampled again (Property 2.20). In Section 2.3.5, we show Property 2.20 for the TC
challenger and explain why it also holds for other choices of challenger answer as in Table 2.2.

Property 2.20. Suppose that (2.22) holds. Assume that the leader satisfies Property 2.17. Let
γ ∈ (0, γ0] where γ0 > 0 is a problem dependent constant. Let g3 be a function s.t. such that∑

t∈[n−1] g3(t) =+∞ o(n1−α3) with α3 > 0 . There exists N3 with Eν [N3] < +∞ such that, for
all n ≥ N3 and all i ̸= i⋆ ,

Nn,i

Nn,i⋆
≥ γ +

w⋆
i /w

⋆
i⋆ [IDS]

w⋆
β,i/w

⋆
β,i⋆ [fixed β]

=⇒ P|n(Cn = i | Bn = i⋆) ≤ g3(n) . (2.27)

Lemma 2.21 shows (2.26), i.e. the convergence time have a finite expectation.
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Lemma 2.21. Suppose that (2.22) holds. Using randomization (or tracking for a deterministic
leader/challenger, see Section 2.2.4), a Top Two algorithm with leader and challenger satisfying
Properties 2.17 and 2.20 is such that there exists γν > 0 such that, for all γ ∈ (0, γν ] ,

[IDS] Eν [Tγ(w⋆)] < +∞ and [fixed β] Eν [Tγ(w⋆
β)] < +∞ .

The proof of Lemma 2.21 is detailed in Appendix B.9, and the intuition is sketched below.

Proof. Using Property 2.17, we know that the leader will be i⋆ . Using Property 2.20, we also
know that an arm i ̸= i⋆ will not be chosen as challenger if the ratio of the empirical allocation
Nn,i/Nn,i⋆ exceeds the ratio of the (resp. β-)optimal allocation (by some constant). Since it
is not a challenger anymore, it will not be sampled, hence the empirical ratio will decrease
again. Leveraging Lemma 2.18, the allocation of the arms i ̸= i⋆ will balance themselves (
β-)optimally for n large enough. Therefore, the convergence time has finite expectation. ■

Suppose that Assumption 2.13 holds, combining Lemmas 2.11, 2.16 and 2.21, we obtain
Theorem 2.8 for a Top Two algorithm with leader satisfying Properties 2.14 and 2.17 and
challenger satisfying Properties 2.15 and 2.20.

2.3.5 A Pedagogical Example: EB-TC

In the unified analysis presented above, the proofs were only done for two choices of the target
allocation, i.e. fixed β and optimal design IDS, as well as the randomized and the tracking
approach (for deterministic leader/challenger pair) to reach the target. When studying a
specific Top Two algorithms, it remains to show that the leader satisfies Properties 2.14 and 2.17
and that the challenger satisfies Properties 2.15 and 2.20. For the sake of space, we will not
detail the analysis of each possible choice of the leader and challenger as detailed in Tables 2.1
and 2.2. We present the proof for the EB leader and the TC challenger and refer to Appendix D
in Jourdan et al. [2022] for more details on the other choices.

EB leader answer Using concentration arguments (Lemma 2.9), it is straightforward to show
that the EB leader answer will be the arm with the highest true mean among arms that are
sampled enough (i.e. Property 2.14 holds). Provided that (2.22) holds, the EB leader answer
will be i⋆ , hence P|n(Bn ̸= i⋆) = 0 (i.e. Property 2.17 holds). Both proofs are detailed in
Appendix B.12.
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Other leader answers Given the formulas of the UCB leader in (2.4) and the EI leader
in (2.6), it is straightforward to show that Properties 2.14 and 2.17 also hold for those leader
answers. For randomized leaders, the effective TS leader answer matches the effective PS leader,
hence the proof is the same, i.e. arg maxi P|n(BT S

n = i) = arg maxi Pθn∼Πn|n(i ∈ i⋆(θn)) =
arg maxi P|n(BP S

n = i) . Let i ̸= j , then Pθn∼Πn|n(i ∈ i⋆(θn)) ≤ Pθn∼Πn|n(θn,i ≥ θn,j) . For
Gaussian distributions, we need to use the following concentration result (e.g. Qin et al. [2017])

Pθn∼Πn|n(θn,i ≥ θn,j) ≤ exp(−Wn(i, j))/2 when µn,j > µn,i . (2.28)

This allows us to conclude that Properties 2.14 and 2.17 hold for the TS and PS leader answers.

TC challenger answer The proof of Property 2.15 relies on comparing the growth of the em-
pirical transportation costs. Given two arms (i, j) which are sampled enough and satisfies that
µi > µj , the empirical transportation cost is strictly positive and increases linearly (Lemma 2.22
proved in Appendix B.10).

Lemma 2.22. Let SL
n and I⋆

n as in (2.24). There exists L4 with Eν [(L4)α] < +∞ for all α > 0
such that, for all L ≥ L4 and all n with SL

n ̸= ∅ ,Wn(i, j) ≥ LCν for all (i, j) ∈ I⋆
n ×

(
SL

n \ I⋆
n

)
,

where Cν > 0 is a problem dependent constant.

Given two arms (i, j) such that only arm i is sampled enough, the empirical transportation
cost is linearly upper bounded (Lemma 2.23 proved in Appendix B.11).

Lemma 2.23. Let SL
n as in (2.24). There exists L5 with Eν [(L5)α] < +∞ for all α > 0 such

that for all L ≥ L5 and all n ∈ N ,Wn(i, j) ≤ L(Dν +D0Wµ)2 for all (i, j) ∈ SL
n × SL

n , where
Dν > 0 (resp. D0 > 0 )is a problem (resp. in)dependent constant andWµ as in Lemma 2.9.

Combining Lemmas 2.22 and 2.23, it is direct to see that all the empirical transportation costs
between two sampled enough arms will exceed any empirical transportation costs between a
sampled enough leader and an undersampled challenger. Therefore, using Property 2.14, the TC
challenger answer will be undersampled when the leader is sampled enough (i.e. Property 2.14
holds).

To prove Property 2.20, we will compare empirical transportation costs more precisely. We
only sketch the proof of the optimal design IDS (similar proof for fixed design β ). Let i be
an arm such that Nn,i/Nn,i⋆ ≥ γ + w⋆

i /w
⋆
i⋆ . Using Lemma 2.18, there exists an arm j /∈ {i⋆, i}

such that Nn,j/Nn,i⋆ ≤ w⋆
j/w

⋆
i⋆ . Using that w → C(i⋆, i;κ,w) is increasing and the equality at
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equilibrium (Lemma 2.10), we obtain that

Wn(i⋆, i)
Wn(i⋆, j) ≥

(
µn,i⋆ − µn,i

µi⋆ − µi

µi⋆ − µj

µn,i⋆ − µn,j

)2 1 + w⋆
i⋆/w⋆

i

1 + (w⋆
i /w

⋆
i⋆ + γ)−1 ≈

n→+∞

1 + w⋆
i⋆/w⋆

i

1 + (w⋆
i /w

⋆
i⋆ + γ)−1 > 1 .

SinceWn(i⋆, i) > Wn(i⋆, j) , we conclude that Cn ̸= i (i.e. Property 2.20 holds).
Both proofs are detailed in Appendix B.13.

Other challenger answers Given the formulas of the TCI challenger, the KKT challenger, and
the EI challenger in (2.8), it is straightforward to show that Properties 2.15 and 2.20 also hold for
those challenger answers. For randomized leaders, the effective RS challenger answer matches
the effective PS leader, hence the proof is the same, i.e. arg max

i ̸=B̂n
P|n(CRS

n = i | Bn = B̂n) =
arg max

i ̸=B̂n
Pθn∼Πn|n(i ∈ i⋆(θn)) = arg max

i ̸=B̂n
P|n(CP S

n = i | Bn = B̂n) . While the effective
PPS challenger can be different, the proof is also similar. The proof of Property 2.15 relies
on (2.28), and on a coarse anti-concentration result, i.e. PΠn|n(Jn ∈ i⋆(θn)) ≥ PΠn|n(θn,Jn ≥
un)/2K−1 for a well chosen un and Jn . The proof of Property 2.20 relies on (2.28), and on a
tight anti-concentration result, i.e. Pθn∼Πn|n(θn,i ≥ θn,i⋆) ⪆ exp(−Wn(i⋆, i)) .

2.4 Non-asymptotic Sample Complexity Upper Bound

While the literature provides a detailed understanding of the asymptotic regime, many interest-
ing questions are unanswered in the non-asymptotic regime. Recent works [Chen et al., 2017c,
Simchowitz et al., 2017, Mason et al., 2020, Marjani et al., 2022] have shown that the sample
complexity is affected by large moderate confidence terms (independent of δ , see Section 1.4.1
in Chapter 1 for more details). The asymptotic analysis presented above applies to EB-TC
algorithm whose empirical stopping times are orders of magnitude larger than its competitors
for δ = 0.01 . Since the proof of asymptotic optimality hides design flaws, non-asymptotic
guarantees should be derived to understand which Top Two algorithms will perform well in
practice for any reasonable choice of δ (not necessarily close to 0 ). We tackle this problem in
this section.

The UCB-TC-β algorithm (see Algorithm 2.2) is a specific instance of Algorithm 2.1 which
uses the GLR stopping rule and combines the UCB leader, the TC challenger, the fixed β

target andK tracking procedures as in (2.19) to reach it. In Jourdan and Degenne [2023], we
proposed TTUCB that is the first fully deterministic Top Two algorithm. Adopting the naming
convention from Section 2.2.5, TTUCB is exactly UCB-TC-β.

In Section 2.3, the guarantees hold only for arms having distinct means. Moreover, an
asymptotic result provides no guarantees on the performance in a moderate regime of δ . We
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1 Input: (β, δ) ∈ (0, 1)2 , threshold c : N × (0, 1) → R+ and function g : N → R+ .
2 Pull once each arm i ∈ [K] ; for n > K do
3 Set ı̂n ∈ arg maxi∈[K] µn,i ; // Candidate answer

4 If mini ̸=ı̂n

µn,ı̂n −µn,i√
1/Nn,ı̂n +1/Nn,i

≥
√

2c(n− 1, δ) then return ı̂n ; // GLR stopping

5 Set Bn ∈ arg maxi∈[K]

{
µn,i +

√
g(n)/Nn,i

}
; // Leader

6 Set Cn ∈ arg mini ̸=Bn

(µn,Bn −µn,i)+√
1/Nn,Bn +1/Nn,i

; // Challenger

7 Set In = Bn if NBn
n,Bn

≤ βLn+1,Bn , otherwise In = Cn ; // Tracking

8 Pull In , observe Xn,In and update (µn, Nn) ;
9 end for

Algorithm 2.2: UCB-TC-β (or TTUCB) algorithm.

address those two limitations. We prove a non-asymptotic upper bound on the expected sample
complexity holding for any instance having a unique best arm.

Bonus for the UCB leader For notational simplicity, we denote by Ln,i =
∑

j ̸=i Tn(i, j) the
number of times arm iwas the leader. Let α > 1 and s > 1 be two concentration parameters.
The choice of g(n) in the UCB leader should ensure that we have an upper confidence bound
on µi holding with high probability: with probability 1 − Kn−s , for all t ∈ [n1/α, n] and
all arms i ∈ [K] , µi ∈ [µt,i ±

√
g(t)/Nt,i] . For Gaussian distribution with unit variance,

a function g that is sufficient for our proof can be obtained by a union bound over time,
giving gu(n) = 2α(1 + s) logn . We can improve on gu with mixtures of martingales, yielding
gm(n) = W−1 (2sα log(n) + 2 log(2 + α logn) + 2) withW−1(x) = −W−1(−e−x) for all x ≥ 1 ,
whereW−1 is the negative branch of the LambertW function, andW−1(x) ≈ x+ log(x) (see
Appendix A). A UCB leader with g0(n) = 0 recovers the Empirical Best (EB) leader. Choosing
g is central for empirical performance and non-asymptotic guarantees but not for asymptotic
ones. Lower g yields better empirical performance since larger g are more conservative. In our
experiments with α = s = 1.2 , we use gm since gm(n) ≤ gu(n) for n ≥ 50 .

Non-asymptotic upper bound Theorem 2.24 gives an upper bound on the expected sample
complexity holding for any δ and any instance having a unique best arm. The proof of Theo-
rem 2.24 is sketched in Section 2.4.1, and we refer the reader to Appendix D in Jourdan and
Degenne [2023] for more details.

Theorem 2.24. Let δ ∈ (0, 1) . Using the threshold c(n, δ) as in (2.3) in the GLR stopping
rule (2.2) and gu with s = α = 1.2 , the UCB-TC-1/2 algorithm satisfies that, for all ν ∈ DK with
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mean µ ∈ RK such that |i⋆(µ)| = 1 ,

Eν [τδ] ≤ inf
(w0,ε)∈[0,(K−1)−1]×(0,1]

max
{
Tε(δ, w0), C1.2

µ , Cε(w0)6, (2/ε)1.2
}

+ 12K ,

where Cµ = h1 (26H(µ)) , Cε(w0) = 2/(εaν(w0)) + 1 ,

Tε(δ, w0) = sup
{
n | n− 1 ≤ 2T ⋆

1/2(ν)(1 + ε)2(1 − w0)−dν(w0)(
√
c(n− 1, δ) +

√
4 logn)2

}
,

with aν(w0) = (1 − w0)dν(w0) max{mini ̸=i⋆(µ)w
⋆
1/2(ν)i, w0/2} and dν(w0) = |{i ̸= i⋆(µ) |

w⋆
1/2(ν)i < w0/2}| . The function h1(x) := xW−1

(
log(x) + 2+2K

x

)
is positive, increasing for

x ≥ 2 + 2K , and satisfies h1(x) ≈ x(log x+ log log x) .

TheUCB-TC-1/2 sampling rule using gm satisfies a similar upper bound. Since Theorem 2.24
holds for any instance having a unique best arm, this corroborates the intuition that assuming
mini ̸=j |µi − µj | > 0 is an artifact of the existing proof to obtain asymptotic β-optimality.

The upper bound onEν [τδ] involves several terms. The δ-dependent term is Tε(δ, w0) . In the
asymptotic regime, we can show that lim supδ→0 T0(δ, 0)/ log(1/δ) ≤ 2T ⋆

1/2(ν) , i.e. takingw0 = 0
and letting ε go to zero. While there is (sub-optimal) factor 2 in T0(δ, 0) , Section 2.3 shows
that UCB-TC-1/2 is asymptotically 1/2-optimal. This factor is a price we paid to obtain more
explicit non-asymptotic terms, and removing it would require more sophisticated arguments
to control the convergence of the empirical proportions Nn/(n− 1) towards w⋆

1/2(ν) .
In the regime where H(µ) → +∞ , the upper bound is dominated by the δ-independent

term C1.2
µ (when α = 1.2 ) with satisfies Cµ = O(H(µ) logH(µ)) . Compared to the best-

known upper and lower bounds in this regime (see discussion below), our non-asymptotic
term has a sub-optimal scaling in O((H(µ) logH(µ))α) with α > 1 . While taking α ≈ 1 would
mitigate this sub-optimality, it would yield a larger dependency in Cε(w0)α/(α−1) . Empirically,
Figures 2.2(b) hints that the empirical performance of UCB-TC-1/2 has a better scaling with
H(µ) than H(µ)α .

For instances such that mini ̸=i⋆ w⋆
1/2(ν)i is arbitrarily small, taking w0 = 0 yields an arbi-

trarily large Cε(0) . By clipping with w0/2 > 0 , we circumvent this pitfall and ensure that
Cε(w0) = O(K/ε) . Since it yields a larger Tε(δ, w0) , we are trading off asymptotic terms
for improved non-asymptotic ones. We illustrate this with two archetypal instances. For the
“1-sparse” instance, in which µ1 > 0 and µi = 0 for all i ̸= 1 , we have by symmetry that
2w⋆

1/2(ν)i = 1/(K − 1) for all i ̸= 1 . Therefore, we have Cε(w0) = O(K/ε) since dν(w0) = 0
for all w0 ∈ [0, 1/(K − 1)] . The “almost dense” instance is such that µ1 = 1 , µK = 0 and
µi = 1 − γ for all i /∈ {1,K} . By symmetry, there exists a function h : [0, 1) → [0, (K − 1)−1)
with limγ→0 h(γ) = 0 , such that 2w⋆

1/2(ν)K = h(γ) and 2w⋆
1/2(ν)i = (1 − h(γ))/(K − 2) for
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Table 2.3 – Upper bound on the sample complexity τδ in probability ( § ) or in expectation ( † ). The
notation O displays the dominating term when δ → 0 for the asymptotic regime and whenH(µ) → +∞
(or ∆i → 0 ) for the finite-confidence one. The notation Õ hides polylogarithmic factors. (**) Upper
bound on Eν [τδ1 (E)] where P[E∁] ≤ γ . (*) The asymptotic upper bound holds for instances having
all distinct means, while the non-asymptotic one doesn’t require this assumption. Ordered references:
Kalyanakrishnan et al. [2012], Karnin et al. [2013], Jamieson et al. [2014], Degenne et al. [2019], Katz-
Samuels et al. [2020], Wang et al. [2021], Barrier et al. [2022], Jourdan and Degenne [2023].

Algorithm Asymptotic behavior Finite-confidence behavior
LUCB1† O (H(µ) log(1/δ)) O (H(µ) logH(µ))
Exp-Gap§ O (H(µ) log(1/δ)) O(

∑
i ̸=i⋆ ∆−2

i log log ∆−1
i )

lil’ UCB§ O (H(µ) log(1/δ)) O(
∑

i ̸=i⋆ ∆−2
i log log ∆−1

i )
DKM† T ⋆(ν) log(1/δ) + Õ(

√
log(1/δ)) Õ

(
KT ⋆(ν)2)

Peace§ O (T ⋆(ν) log(1/δ)) O (H(µ) log(K/∆min))
FWS† T ⋆(ν) log(1/δ) + O(log log(1/δ)) O

(
eKH(µ)19/2

)
EBS† ** T ⋆(ν) log(1/δ) + o(1) O

(
KH(µ)4/w2

min
)

UCB-TC†* T ⋆
β (ν) log(1/δ) + O(log log(1/δ)) O

(
max{H(µ) logH(µ),K

1
α−1 }α

)
for α > 1

all i /∈ {1,K} . While limγ→0Cε(0) = +∞ , we obtain limγ→0Cε(w0) = O(K/ε) by taking
w0 = (1 − h(γ))/(K − 2) since dν(w0) = 1 .

Comparison with existing upper bounds Table 2.3 summarizes the asymptotic and non-
asymptotic scaling of the upper bound on the sample complexity of existing BAI algorithms.
Among the class of asymptotically ( β-)optimal algorithms, very few also enjoy non-asymptotic
guarantees, e.g. the analyses of Track-and-Stop and prior Top Two algorithms are asymptotic.
The gamification approach ofDegenne et al. [2019] is the first attempt to provide both. Their non-
asymptotic upper bound on Eν [τδ] involves an implicit time T1(δ) which scales withKT ⋆(ν)2

and is only valid for log(1/δ) ≳ KT ⋆(ν) (see Lemma 2, with constants in Appendix D.7). Let
T ⋆

δ := T ⋆(ν) log(1/δ) . As a first order approximation, they obtain T1(δ) ≈ T ⋆
δ + Θ

(√
T ⋆

δ log T ⋆
δ

)
, and we obtain T0(δ) ≈ Θ (T ⋆

δ + log T ⋆
δ ) . Wang et al. [2021] were the first to obtain an upper

bound on Eµ[τδ] of the form Θ(T ⋆
δ + log log(1/δ)) . While they improved the second-order δ-

dependent term, the δ-independent term scales with eKH(µ)19/2 (see their Theorem 2 for ε−1 ≳

T ⋆(ν) , with constants given by Appendix N). The algorithm proposed by Barrier et al. [2022]
has a non-asymptotic upper bound on Eν [τδ1 (E)] of the form (1 + ε)T ⋆

δ + f(µ, δ) which is valid
for log(1/δ) ≳ w−2

minK/∆min , where E is such that Pν(E∁) ≤ γ . Since f(µ, δ) =δ→0 o(1) , they
obtain a better δ-dependency. However, f(µ, δ) is arbitrarily largewhenwmin := mini∈[K]w

⋆(ν)i

is arbitrarily small since it scales with KH(µ)4/w2
min . Therefore, they suffer from the pitfall

which we avoided by clipping. In light of Table 2.3, UCB-TC-β enjoys the best scaling when
H(µ) → +∞ in the class of asymptotically ( β-)optimal BAI algorithms.
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The LUCB1 algorithm [Kalyanakrishnan et al., 2012] is the first algorithm that resembles a
Top Two algorithm, with the difference that LUCB samples both the leader and the challenger
instead of choosing one. As LUCB1 satisfies Eν [τδ] ≤ 292H(µ) log(H(µ)/δ) + 16 , it enjoys
better scaling when H(µ) → +∞ than UCB-TC-β. Since the empirical allocation of LUCB1 is
not converging towards w⋆

1/2(ν) , it is not asymptotically 1/2-optimal. The Peace algorithm
[Katz-Samuels et al., 2020] has a non-asymptotic upper bound on τδ of the form O((T ⋆

δ +
γ⋆(µ)) log(K/∆min)) holding with probability 1 − δ . The term γ⋆(µ) is a Gaussian width that
originates from concentration on the suprema of Gaussian processes, and γ⋆(µ) = O(H(µ)) .

Another class of BAI algorithms focuses on the dependency in the gaps ∆i := µi⋆ −µi , and
derive non-asymptotic upper bound on τδ holding with high probability. Karnin et al. [2013],
Jamieson et al. [2014], Chen et al. [2017b,c] gives δ-PAC algorithms with an upper bound of
the form O(H(µ) log(1/δ) +

∑
i ̸=i⋆ ∆−2

i log log ∆−1
i ) , and Jamieson et al. [2014] shows that for

two arms the dependency ∆−2 log log ∆−1 is optimal when ∆ → 0 . While those algorithms
obtain the best scaling when H(µ) → +∞ , they are not asymptotically ( β-)optimal.

2.4.1 Proof Sketch of Theorem 2.24

Existing analyses of the Top Two algorithms are inherently asymptotic and require too much
control of the empirical means and proportions to yield meaningful information in the finite-
confidence regime. Therefore, we adopt a different approach that resembles the non-asymptotic
analysis of Degenne et al. [2019]. We first define concentration events to control the deviations
of the random variables used in the UCB leader and the TC challenger. For all n > K , let
En :=

⋂
i∈[K]

⋂
t∈[n5/6,n](E1

t,i ∩ E2
t,i) where

E1
t,i :=

{√
Nt,i|µt,i − µi| <

√
6 log t

}
and E2

t,i :=

(µt,i⋆ − µt,i) − (µi⋆ − µi)√
1/Nt,i⋆ + 1/Nt,i

> −
√

8 log t

 .

Using concentration results, it is straightforward to show that Pν(En) ≤ (2K − 1)n−1.2 for all
n > K . Using Lemma 2.25, the proof boils down to constructing a time T (δ) after which
En ⊆ {τδ ≤ n} for n > T (δ) since it would yield that Eν [τδ] ≤ T (δ) + 12K .

Lemma 2.25. Let (En)n>K be a sequence of events and T (δ) > K be such that for n ≥ T (δ) ,
En ⊆ {τδ ≤ n} . Then, Eν [τδ] ≤ T (δ) +

∑
n>K Pµ(E∁

n) .

Let n > K such that En ∩ {n < τδ} holds, and t ∈ [n5/6, n] such that BUCB
t = i⋆ . Using that

t ≤ n < τδ , under
⋂

i ̸=i⋆ E2
t,i , the stopping condition yields that

√
2c(n− 1, δ) ≥ ((µi⋆ − µCTC

t
)(1/N i⋆

t,i⋆ + 1/N i⋆

t,CTC
t

)−1/2 −
√

8 logn)+ .
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Let w⋆
1/2 be the unique element of w⋆

1/2(ν) . Lemma 2.26 links the empirical proportions
N i⋆

t,i/(t− 1) to w⋆
1/2,i for i ∈ {i⋆, CTC

t } . It is the key technical challenge of our non-asymptotic
proof strategy. Its proof is sketched below.

Lemma 2.26. Let ε ∈ (0, 1] . There exists Tµ > 0 such that for all n > Tµ such that En ∩ {n < τδ}
holds, there exists t ∈ [n5/6, n] with BUCB

t = i⋆ , which satisfies

(n− 1)(1/N i⋆

t,i⋆ + 1/N i⋆

t,CTC
t

) ≤ (1 + ε)2(2 + 1/w⋆
1/2,CTC

t
)/β .

First, we conclude the proof of Theorem 2.24. Let ε, Tµ and t as in Lemma 2.26 and

T (δ) := sup
{
n | n− 1 ≤ T ⋆

1/2(µ)(1 + ε)2
(√

c(n− 1, δ) +
√

4 logn
)2
/β

}
.

For all n > max{Tµ, T (1)} , we have√
c(n− 1, δ) +

√
4 logn ≥

√
β(n− 1)T ⋆

1/2(µ)−1(1 + ε)−2 .

Therefore, we have proven the result since En ∩ {n < τδ} = ∅ for all n > max{Tµ, T (δ)} .
Provided that Bt = i⋆ , the above only used the stopping condition and TC challenger, and

no other properties of the leader. Lemma 2.27 shows that BUCB
t = i⋆ , except for a sublinear

number of times. Its proof in Appendix B.14 uses classical tools from the regret analysis of the
UCB algorithms. Section 2.4.1 exhibits sufficient conditions on a regret minimization algorithm
to obtain a result similar to Lemma 2.27, hence achieving a non-asymptotic upper bound.

Lemma 2.27. Under the event
⋂

k∈[K]
⋂

t∈[n5/6,n] E1
t,k , we haveLn,i⋆ ≥ n−1−24H(µ) logn−2K.

Proof sketch of Lemma 2.26 The key technical challenge is to linkN i⋆

t,CTC
t
/(n−1) withw⋆

1/2,CTC
t

.
We adopt the approach used in the analysis of the APT (Anytime Parameter-free Thresholding)
algorithm [Locatelli et al., 2016]: consider an arm being over-sampled and study the last
time this arm was pulled. Its empirical transportation cost will be simultaneously large (over-
sampled) and the smallest (chosen as TC challenger) and can be related to the one at time n
(last time it was sampled). By the pigeonhole principle, at time n ,

∃k1 ̸= i⋆, s.t. N i⋆

n,k1 ≥ 2(Ln,i⋆ −N i⋆

n,i⋆)w⋆
1/2,k1

. (2.29)

Let t1 be the last time at which BUCB
t = i⋆ and CTC

t = k1 , hence N i⋆

t1,k1
≥ N i⋆

n,k1
− 1 . Using

Lemmas 2.7 and 2.27, we show thatN i⋆

t1,k1
⪆ w⋆

1/2,k1
(n− 1) , hence t1 ≥ n5/6 for n large enough.
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Then, we need to linkN i⋆

t1,i⋆ with (n−1)/2 . Whenw⋆
1/2,k1

is small, (2.29) can be true at t1 = n5/6

, hence there is no hope to show that t1 = n− o(n) . To circumvent this problem, we link N i⋆

t1,i⋆

with N i⋆

t1,k1
thanks to Lemma 2.7, and use that

n− 1
N i⋆

t1,i⋆

+ n− 1
N i⋆

t1,k1

≤
(

2 + n− 1
N i⋆

t1,k1

)(
N i⋆

t1,k1

N i⋆

t1,i⋆

+ 1
)

≤ 2(1 + ε)2(2 + 1/w⋆
1/2,k1

) ,

for n > Tµ(w−) with Tµ(w−) ≤ max{C1.2
µ , (2/(εw−)+1)6, (2/ε)1.2} , wherew− = mini ̸=i⋆ w⋆

1/2,i

is a strictly positive lower bound on w⋆
1/2,k1

. This concludes the proof for w0 = 0 . The (sub-
optimal) multiplicative factor 2 in T0(δ, 0) comes from the inequality (2.30). To remove it, we
need to control the deviation between the empirical proportion of arm i andw⋆

1/2,i for all i ∈ [K]
. Nevertheless, UCB-TC-1/2 is asymptotically 1/2-optimal (see Section 2.3).

Refined analysis For w0 ∈ (0, (K − 1)−1] , we clip mini ̸=i⋆ w⋆
1/2,i by w0/2 (see Jourdan and

Degenne [2023] for more details). Our method could be used to analyze APT with threshold
γ ∈ R and precision ε = 0 [Locatelli et al., 2016] in the fixed-confidence setting while clipping
|µi − γ| when this gap is too small. It can also be used for the non-asymptotic analysis of other
algorithms, e.g. EB-TCε in Chapter 5 and APGAI in Chapter 6.

Beyond Gaussian distributions Theorem 2.24 hold for 1-sub-Gaussian random variables
thanks to direct adaptations of concentration results. The situation is akin to the regret bound
of UCB: it holds for the class of 1-sub-Gaussian distributions, but it is close to optimality in
a distribution-dependent sense only for Gaussian distributions. However, if the focus is on
asymptotically β-optimal algorithms, then it is challenging to express the characteristic time
T ⋆(ν) for the non-parametric class of σ-sub-Gaussian distributions.

The UCB-TC-β algorithm can also be defined for more general distributions such as single-
parameter exponential families or bounded distributions. It is only a matter of adapting the
definition of the UCB leader and the TC challenger. For bounded distributions, we refer the
reader to Chapter 4. We believe that non-asymptotic guarantees could be obtained for more
general distributions, but it will come at the price of more technical arguments and less explicit
non-asymptotic terms. In particular, it is challenging to prove a counterpart of Lemma 2.26.

Regret Minimization Leader

Our non-asymptotic analysis highlights that any regret minimization algorithm that selects the
arm i⋆ except for a sublinear number of times (Property 2.28) can be used as leader with the
TC challenger. The UCB leader satisfies Property 2.28 by Lemma 2.27.
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Property 2.28. There exists (Ẽn)n with
∑

n Pµ(Ẽ∁
n) < +∞ and a function h with h(n) = O(nγ)

for some γ ∈ (0, 1) such that under event Ẽn , Ln,i⋆ ≥ n− 1 − h(n) .

Since the concentration events (Ẽn)n only control the choice of the leader, we still need to
control the random variables used in the TC challenger. This is straightforwardly done by
considering En = Ẽn ∩ (

⋂
i∈[K]

⋂
t∈[n5/6,n] E2

t,i) which satisfies that∑n Pµ(E∁
n) < +∞ .

For asymptotic guarantees, the sufficient properties on the leader described in Section 2.3 are
weaker since they are even satisfied by the greedy choice Bn = ı̂n . While Top Two algorithms
were introduced by Russo [2016] to adapt Thompson Sampling to BAI, we have shown that other
regret minimization algorithms can be used for the choice of the leader. The Top Two approach
can be used as a wrapper to convert any regret minimization algorithm into a best arm identification
strategy by combining it with the TC challenger.

The regret of an algorithm at time n , R̄n =
∑

i ̸=i⋆ ∆iNn,i , is almost always studied through
its expectation E[R̄n] . However, this is not sufficient for our application. We need to prove that
with high probability, Nn,i is small for all arms i ̸= i⋆ . We showed those guarantees for UCB,
and they are known for ETC [Lattimore and Szepesvari, 2020], yet unknown for Thompson
Sampling. We cannot in all generality obtain a good enough bound on Nn,i from a bound on
E[R̄n] . However, we can if we have high probability bounds on R̄n . Suppose that a regret
minimization algorithm Alg1 satisfies Property 2.29 and is independent of the horizon n .

Property 2.29. There exists s > 1 , γ ∈ (0, 1) , (En,δ)(n,δ) with
∑

n Pµ[E∁
n,n−s ] < +∞ and a

function h with h(n, n−s) = O(nγ) such that under event En,δ , R̄n ≤ h(n, δ) .

Let Alg2 be the algorithm Alg1 used in a Top Two procedure, but which uses only the
observations obtained at times n such that In = Bn and discards the rest. Let Ẽn = En,n−s

and ∆min = mini ̸=i⋆ ∆i . Then, under Ẽn , Alg2 satisfies ∑i ̸=i⋆ N i
n,i ≤ h(n, n−s)/∆min and

Lemma 2.7 yields N i⋆

n,i⋆ ≥ β(n− 1) − h(n, n−s)/∆min −K/2 . Therefore, Property 2.28 holds
for Ẽn and h(n) = (h(n, n−s)/∆min +K/2 + 1)/β . Given a specific algorithm, a finer analysis
could avoid discarding information by using Alg1 with every observation.

2.5 Experiments

In the moderate regime ( δ = 0.1 ), we assess the empirical performance of several instances of
the Top Two approach. For the leader/challenger pair, we consider the following benchmarks:
TTTS [Russo, 2016] (i.e. TS-RS), TTEI [Qin et al., 2017] (i.e. EI-EI), T3C [Shang et al., 2020]
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2.5 Experiments

Figure 2.1 – Empirical stopping time on the “1-sparse” instance (K,µ⋆,∆) = (35, 0, 0.5) . Top Two
algorithms use optimal design IDS unless specified otherwise: “-F” is the fixed design β = 1/2 and “-B”
is the optimal design BOLD. The lower bound is T ⋆(ν) log(1/δ) .

(i.e. TS-TC), EB-TCI [Jourdan et al., 2022], TTUCB [Jourdan and Degenne, 2023] (i.e.UCB-
TC) with a bonus gm and concentration parameters s = α = 1.2 . For the target allocation,
we compare the fixed design β = 1/2 with the optimal designs IDS and BOLD. We recall
that the mechanism to reach the target is defined implicitly by the first three choices (see
Section 2.2.5). While TS-RS and TS-TC will use randomization, the three other algorithms will
use tracking (2.18) (resp. (2.19)) for optimal (resp. fixed) design. In addition, we consider
Track-and-Stop (TaS) [Garivier and Kaufmann, 2016], FWS [Wang et al., 2021], DKM [Degenne
et al., 2019], LUCB [Kalyanakrishnan et al., 2012] and uniform sampling. At the exception of
LUCB, all algorithms use the stopping rule (2.2) with the heuristic threshold c(n, δ) = log((1 +
logn)/δ) . Even though this choice is not sufficient to prove δ-correctness, it yields an empirical
error that is orders of magnitude lower than δ . To allow for a fair numerical comparison, LUCB
uses

√
2c(n− 1, δ)/Nn,i as a bonus, which is too tight to yield valid confidence intervals. For

supplementary experiments and implementation details, we refer the reader to Appendices I
in Jourdan et al. [2022] and G in Jourdan and Degenne [2023].

73



A Pedagogical Example: Gaussian with Known Variances

Figure 2.2 – Empirical stopping time on (a) random instances (K = 10 ) and (b) “1-Sparse” instances.

“1-sparse” instances The ratio T ⋆
1/2(ν)/T ⋆(ν) seems to reach its highest value rK = 2K/(1 +

√
K − 1)2 for “1-sparse” instances (LemmaC.6 in Jourdan andDegenne [2023]), i.e. µi = µ1−∆

for all i ̸= 1 with ∆ > 0 . To best observe differences between the Top Two algorithms using
fixed design β = 1/2 and the ones using optimal designs IDS and BOLD, we consider such
instances with K = 35 ( rK ≈ 3/2 ) and (µ1,∆) = (0, 0.5) . We average our results on 1000
runs.

Figure 2.1(a) showcases that Top Two algorithms are significantly better than existing BAI
algorithms. The best performance among the Top Two algorithms is reached by TS-TC since
EI-EI suffers from numerous outliers. UCB-TC is slightly better than TS-RS, which outperforms
EB-TCI. In Figure 2.1(b), we observe that Top Two algorithms using the optimal design IDS
instead of the fixed design β = 1/2 have a smaller empirical stopping time. In Figure 2.1(c),
we see similar performance between the Top Two algorithms using the optimal design IDS or
the optimal design BOLD.

Random instances We assess the performance on 1000 random Gaussian instances with
K = 10 such that µ1 = 0.6 and µi ∼ U([0.2, 0.5]) for all i ̸= 1 .

Figure 2.2(a) confirms the ranking between algorithms observed in Figure 2.1(a). Top Two
algorithms have similar performance, and they outperform their competitors. On random
instances, EB-TCI is better than UCB-TC and TS-RS.

Larger sets of arms We evaluate the impact of a larger number of arms. As in Jamieson and
Nowak [2014], we use the “1-sparse” instances (µ1,∆) = (1/4, 1/4) with varyingK for which
H(µ) = 32(K − 1) . We restrict ourselves to algorithms with low computational cost and good
empirical performance and average our results on 100 runs.

In Figure 2.2(b), all algorithms have the same linear scaling inK (i.e. inH(µ) ). Faced with
an increase in the number of arms, the TS leader used in TS-TC appears to be more robust than
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the UCB leader in UCB-TC. This is a common feature of UCB algorithms that have to overcome
the bonus of sub-optimal arms.

EB-TC algorithm As hinted in Section 2.1.2, the EB-TC algorithm performs poorly empirically.
Its greediness is reflected by the large empirical stopping time, i.e. it gets stuck due to unlucky
first draws. While this situation is particularly apparent for the “1-sparse” instances (i.e. the
algorithm does not stop), we can also observe it for random instances. In the setting of
Figure 2.2(a), EB-TC-IDS has an average empirical stopping time of 5.7 · 103 , a standard
deviation of 12535 , and a maximum at 95426 .

2.6 Discussion

In Chapter 2, we provided a detailed overview of the Top Two approach. We proposed a
unified perspective on the class of Top Two algorithms that are defined by four choices (leader
answer, challenger answer, target allocation, and mechanism to reach it) and presented several
instances (Section 2.2). We introduced a unified asymptotic analysis of the Top Two approach
(Section 2.3), which identifies desirable properties on the choices of the leader and challenger
answers to achieve asymptotic ( β-)optimality (Theorem 2.8). Moreover, we gave the first
non-asymptotic analysis of a Top Two algorithm (Theorem 2.24), which identifies sufficient
properties of the leader (seen as a regret-minimization algorithm) for it to hold (Section 2.4).
While different Top Two algorithms had similar empirical performance, they outperformed
other algorithms (Section 2.5).

While asymptotic β-optimality was first shown for the Top Two approach in Shang et al.
[2020], the proof was only done for TS-TC-β and TS-RS-β for Gaussian with known variance.
While this chapter proposed a unified analysis for other Top Two algorithms, the presentation
was only done for this specific class of distributions. Extension to a more general class of
distributions is also possible. We note that the extension to other classes of a one-parameter
exponential family is relatively straightforward (see Appendix H in Jourdan et al. [2022]).
Therefore, we will focus on more challenging classes, e.g.Gaussian with unknown variance
(see Chapter 3) or non-parametric distributions (e.g. bounded distributions as in Chapter 4).

Even though IDS has been introduced by You et al. [2023] for general one-parameter
exponential families, it is still an open problem to show asymptotic optimality for distributions
other than Gaussian distributions. While an extension of IDS was proposed for more general
classes of distributions, deriving guarantees for them is also challenging. Even though those
extensions are only heuristics (at the moment), they tend to perform better than using a fixed β .
Using BOLD as a target and a forced exploration step, Bandyopadhyay et al. [2024] have shown
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asymptotic optimality of some Top Two algorithms for general one-parameter exponential
families.
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Chapter 3

Dealing with Unknown Variances

In Chapter 3, we study the vanilla BAI problem for Gaussian distributions with unknown
variance in the fixed-confidence setting, as studied in Chapter 2 for known variance. The
presented results were published in Jourdan et al. [2023a].

The problem of identifying the best arm among a collection of items having Gaussian
rewards distribution is well understood when the variances are known. Despite its practical
relevance for many applications, few works studied it for unknown variances. In this chapter,
we introduce and analyze two approaches to deal with unknown variances, either by plugging
in the empirical variance or by adapting the transportation costs. To calibrate our two stopping
rules, we derive new time-uniform concentration inequalities that are of independent interest.
Then, we illustrate the theoretical and empirical performances of our two sampling rule wrap-
pers on Track-and-Stop and on a Top Two algorithm. Moreover, by quantifying the impact on
the sample complexity of not knowing the variances, we reveal that it is rather small.
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Dealing with Unknown Variances

3.1 Introduction

As detailed in Chapter 1, the motivation to study BAI for Gaussian distributions with unknown
variance comes from practical consideration. Surprisingly, and despite its practical relevance,
this problem has received little attention in the bandit literature. Gaussian distributions could
be used to model the revenue generated by different versions of a website in the context of
A/B testing or some biological indicator of the efficiency of treatment in the context of an
adaptive clinical trial comparing several treatments. In both cases, assuming known variances
is a limitation.

We consider the set DN of Gaussian distributions with unknown variance, hence DK = DK
N .

The distributions are denoted by νx,σ2 = N (x, σ2) . Recall that the set of Gaussian distributions
with known variance is denoted by DNσ . We denote the Kullback-Leibler (KL) divergence
between νx1,σ2

1
and νx2,σ2

2
by KL((x1, σ

2
1), (x2, σ

2
2)) . Let ν ∈ DK which is uniquely defined by

its mean and variance vectors (µ, σ2) ∈ RK × (R⋆
+)K such that the set of arms with largest mean

i⋆(µ) := arg maxi∈[K] µi is reduced to a singleton denoted by i⋆ (or i⋆(µ) by abusing notation),
i.e. S = {µ ∈ RK | |i⋆(µ)| = 1} .

A fixed-confidence algorithm is defined by a sampling rule, a recommendation rule, and a
stopping rule. At time n , we denote by ı̂n the candidate answer and by In the arm to pull. The
stopping rule (and stopping time τδ ) using a fixed confidence level 1 − δ ∈ (0, 1) should ensure
δ-correctness, i.e. Pν (τδ < +∞, ı̂τδ

̸= i⋆(µ)) ≤ δ for all instances ν ∈ DK with mean µ ∈ S .
In this chapter, we follow the approach pioneered by Garivier and Kaufmann [2016] and ini-

tially introduced for one-dimensional parametric models (e.g.Gaussian with known variance).
They derived lower bounds on the expected sample complexity of δ-correct algorithms and
introduced algorithms inspired by the maximization of those lower bounds. As it is common
in previous work for the stopping rule, we will compare a Generalized Likelihood Ratio (GLR)
to a well-chosen threshold [Kaufmann and Koolen, 2021].

Related work Algorithms based on GLR stopping rules and aimed at matching a sample
complexity lower bound were either studied for one-parameter exponential families [Degenne
et al., 2019] or under generic heavy tails assumption [Agrawal et al., 2020]. Other algorithms are
either based on eliminations or confidence intervals and have been analyzed for sub-Gaussian
distributions with a known variance proxy [Even-Dar et al., 2006, Kalyanakrishnan et al., 2012,
Jamieson et al., 2014]. For the special case of bounded distributions, confidence intervals
based on the empirical variance have been used [Gabillon et al., 2012, Lu et al., 2021], yet the
resulting algorithms cannot be applied to unbounded distributions as they rely on the empirical
Bernstein inequality [Maurer and Pontil, 2009]. In the fixed budget setting, in which the size of
the exploration phase is fixed in advance, it is possible to upper bound the error probability of
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the Successive Reject algorithm of Audibert et al. [2010] when the variances are unknown, as
we only need to upper bound the probability that one empirical mean is smaller than another,
see also Faella et al. [2020]. However, in the fixed-confidence setting elimination thresholds,
confidence intervals or GLR tests need to be calibrated in a data-dependent way, which calls
for the development of new time-uniform concentration inequalities provided in this chapter.

In the related literature on ranking and selection [Hong et al., 2021], the problem of finding
the Gaussian distribution with the largest mean has been studied for unknown variances. This
literature mostly seeks to design algorithms that are δ-correct whenever the gap between the
best and second best arm is larger than some specified indifference zone [Kim and Nelson,
2001]. However, the work of Fan et al. [2016] does not consider an indifference zone, and
their algorithm is comparable to ours. They propose an elimination strategy that features the
empirical variances and whose calibration is done based on simulation arguments (resorting to
continuous-time approximations) and justified in an asymptotic regime only (when δ goes to
zero). Our algorithms have better empirical performance and stronger theoretical guarantees.

Contribution 3.1. In Chapter 3, we propose two approaches to deal with unknown variances:
plugging in the empirical variance or considering the transportation costs for unknown variance.
This allows us to easily adapt existing algorithms.

• By extending the lower bound of Garivier and Kaufmann [2016] to our two-parameters setting,
we quantify the impact on the expected sample complexity of not knowing the variances.

• Our two approaches yield the Empirical Variance GLR (EV-GLR) stopping rule, which plugs
in the empirical variance in a GLR assuming known variance, and the GLR stopping rule,
which corresponds to a GLR assuming unknown variance. Our main technical contribution
lies in the derivation of (near) optimal stopping thresholds that ensure the δ-correctness of
both the GLR and the EV-GLR stopping rules, regardless of the sampling rule.

• When considering the sampling rule, each approach yields a wrapper which is a simple
procedure that can be applied to any BAI algorithm for known variances. We illustrate
each wrapper with the Track-and-Stop and the Top Two approach. We show that algorithms
obtained by adapting the transportation costs enjoy stronger theoretical guarantees than the
ones plugging in the empirical variance and obtain the first asymptotically optimal algorithms
for Gaussian bandits with unknown variances.

Empirically, both wrappers have comparable performance when applied to multiple BAI algorithms.
Our findings show that not knowing the variances has a small impact on the expected sample
complexity.
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Dealing with Unknown Variances

3.2 Lower Bound and GLR Stopping Rule

3.2.1 Lower Bounds

As discussed in Section 1.4.1, the δ-correctness requirement leads to a lower bound on the
expected sample complexity on any instance.

Lemma 3.1 (Garivier and Kaufmann [2016]). An algorithm which is δ-correct on all problems
in DK

Nσ
satisfies that, for all ν ∈ DK

Nσ
with mean µ ∈ S , Eν [τδ] ≥ T ⋆(ν;σ) log(1/(2.4δ)) . An

algorithm which is δ-correct on all problems in DK
N satisfies that, for all ν ∈ DK

N with mean µ ∈ S ,
Eν [τδ] ≥ T ⋆(ν) log(1/(2.4δ)) .

For Gaussian with unknown (resp. known) variances, Lemma 3.1 shows that T ⋆(ν) (resp.
T ⋆(ν;σ) ) is the asymptotic complexity of the BAI problem on the instance ν := (νµi,σ2

i
)i , where

T ⋆(ν;σ)−1 = sup
w∈ΣK

min
j ̸=i

C(i, j; ν, w;σ) with

C(i, j; ν, w;σ) = 1
21 (µi ≥ µj) inf

u∈R

{
wi

(µi − u)2

σ2
i

+ wj
(µj − u)2

σ2
j

}
,

T ⋆(ν)−1 = sup
w∈ΣK

min
j ̸=i

C(i, j; ν, w) with

C(i, j; ν, w) = 1 (µi > µj) inf
u∈R

{
wiK−

inf(νi, u) + wjK+
inf(νj , u)

}
,

where the function Kinf over the class DN has the following closed-form expression

K−
inf(νx,σ2 , u) = 1

21 (x > u) log
(

1 + (x− u)2

σ2

)
and

K+
inf(νx,σ2 , u) = 1

21 (x < u) log
(

1 + (x− u)2

σ2

)
.

The maximizers over the simplex ΣK in these complexities are denoted by w⋆(ν) and w⋆(ν;σ)
respectively.

When deriving K±
inf(νx,σ2 , u) for DN , we note that the minimizer κ ∈ D has mean u and

variance σ2 + (x− u)2. Thus, even if we want to identify the arm with the largest mean, the
closest alternatives have an increased variance. When considering the transportation costs as
an information criterion, the closest alternative for unknown variance is harder to differentiate
from νx,σ2 than the closest alternative would we assume σ2 to be known, i.e. C(i, j; ν, w;σ) ≥
C(i, j; ν, w) hence T ⋆(ν;σ) ≤ T ⋆(ν).
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3.2 Lower Bound and GLR Stopping Rule

When the variances are known, the transportation cost has a convenient closed form,
i.e. C(i, j; ν, w;σ) = 1 (µi > µj) 1

2
(µi−µj)2

σ2
i /wi+σ2

j /wj
. On the contrary, the infimum in the alternative

mean parameter λ in the transportation cost for unknown variance has no simple analytic form
since it is a real root of a cubic polynomial. Still, comparing the two types of transportation
costs (and using properties of the mapping x 7→ log(1 + x)/x ) permits to establish a link
between T ⋆(µ;σ) and T ⋆(ν) (resp. T ⋆

β (µ;σ) and T ⋆
β (ν) ), hence to quantify the impact of not

knowing the variances.

Lemma 3.2. Let d(ν) = max
i ̸=i⋆(µ)

(µi⋆(µ)−µi)2

min{σ2
i ,σ2

i⋆(µ)} . Then,

1 < T ⋆(ν)
T ⋆(µ;σ) ≤ d(ν)

log (1 + d(ν)) and 1 <
T ⋆

β (ν)
T ⋆

β (ν;σ) ≤ d(ν)
log (1 + d(ν) . (3.1)

Proof. Using that x → log(1 + x)/x is decreasing for x > 0 and x → log(1 + x) is concave, we
can obtain the result directly. See Lemma 4 in Jourdan et al. [2023a]. ■

When d(ν) is small, say d(ν) ≤ 1 , the two complexities are close since we then have
T ⋆(ν;σ)/T ⋆(ν) ∈ [log 2, 1) . Observe that a small d(ν) also implies that the BAI problem is
hard: if d(ν) ≤ c ∈ R+ then for all i ∈ [K] , min{σ2

i ,σ2
i⋆(µ)}

(µi⋆(µ)−µi)2 ≥ c−1 . Since that ratio is roughly
the number of samples needed to distinguish the two arms, the problem is hard when it is
large. Still, there exist instances with an arbitrarily large complexity ratio T ⋆(ν)/T ⋆(ν;σ) . We
conjecture that they always correspond to easy problems, for which both T ⋆(ν;σ) and T ⋆(ν)
are small. Lemma 3.2 is not sufficient to prove this conjecture as there exist hard instances with
a large value of d(ν) and instances for which the upper bound in (3.1) is not tight.

Asymptotic ( β-)optimality We say that an algorithm is asymptotically optimal (resp. β-
optimal) on DK

N if it is δ-correct and its sample complexity matches that lower bound, i.e. for all
ν ∈ DK

N such that µ ∈ S , lim supδ→0 Eν [τδ]/ log(1/δ) ≤ T ⋆(ν) (resp. T ⋆
β (ν) ). For β ∈ (0, 1) , the

definition of T ⋆
β (ν) is the same as T ⋆(ν)with the additional constraint on the outermaximization

that wi⋆ = β , hence T ⋆(ν) = minβ∈(0,1) T
⋆
β (ν) . Recall that T ⋆

1/2(ν) ≤ 2T ⋆(ν) [Russo, 2016]. The
β-optimality on DK

Nσ
involves T ⋆

β (µ;σ) , which is similarly related to T ⋆(µ;σ) . While there is a
rich literature on asymptotically ( β-)optimal algorithms for Gaussian with known variance,
we are the first to derive algorithms with those guarantees when the variances are unknown.
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3.2.2 GLR Stopping Rules

For all i ∈ [K] , letNn,i =
∑

t∈[n−1] 1 (It = i) , νn,i = N (µn,i, σ
2
n,i) , µn,i and σ2

n,i be the empirical
count, distribution, mean and variance of arm i after time n , defined as

µn,i := N−1
n,i

∑
t∈[n−1]

1 (It = i)Xt,i and σ2
n,i := N−1

n,i

∑
t∈[n−1]

1 (It = i) (Xt,i − µn,i)2 .

As a candidate answer, we use ı̂n ∈ i⋆(µn) , i.e. the empirical best arm (EB). For the stopping
rule, we useGLR stopping rules (see Section 1.4.2 formore details). ForGaussianwith unknown
variances, the GLR can be written as mini ̸=ı̂n Wn(̂ın, i) , where the empirical transportation cost
between arm i and arm j is defined as

Wn(i, j) = C(i, j; νn, Nn) = 1 (µn,i > µn,j) inf
u∈R

∑
k∈{i,j}

Nn,k

2 log
(

1 + (µn,k − u)2

σ2
n,k

)
.

For Gaussian with known variances σ2 , the GLR can be written as mini ̸=ı̂n C (̂ın, j; νn, Nn;σ) .
When σ2 is unknown, we can replace it with its empirical estimate σ2

n . The EV-GLR can be
written as mini ̸=ı̂n W

EV
n (̂ın, i) , where the plug-in empirical transportation cost between arm i

and arm j is defined as

W EV
n (i, j) = C(i, j; νn, Nn;σn) = 1 (µn,i > µn,j) (µn,i − µn,j)2

2(σ2
n,i/Nn,i + σ2

n,j/Nn,j)
.

Let (ci,j)(i,j)∈[K]2 such that ci,j : NK × (0, 1] → R+ . The GLR stopping rule is defined as

τδ := inf {n ∈ N | ∀i ̸= ı̂n, Wn(̂ın, i) > cı̂n,i(Nn, δ)} . (3.2)

The EV-GLR stopping rule given a family of thresholds (ci,j)(i,j)∈[K]2 is defined as

τEVδ := inf
{
n ∈ N | ∀i ̸= ı̂n, W

EV
n (̂ın, i) > cı̂n,i(Nn, δ)

}
. (3.3)

The (resp. EV-)GLR stopping rule is a good candidate to match T ⋆(ν) (resp. T ⋆(ν;σ)
). Indeed, it is easy to prove that sampling arms from w⋆(ν) (resp. w⋆(ν;σ) ) and using
the threshold ci,j(Nn, δ) = log(1/δ) , the lower bound would be matched. However, such a
threshold is too good to be δ-correct (Section 3.3). Moreover, w⋆(ν) (resp. w⋆(ν;σ) ) needs to
be estimated since it is unknown (Section 3.4).
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3.3 Calibration of the Stopping Thresholds

We present ways of calibrating the thresholds used by the GLR stopping rule by leverag-
ing concentration arguments. Under any sampling rule, to obtain a δ-correct GLR stopping
rule it suffices to show that the family of thresholds is such that the following time-uniform
concentration inequality holds for all ν ∈ DK

N with mean µ ∈ S: with probability 1 − δ ,

∀n ∈ N,∀i ̸= i⋆(µ),
∑

k∈{i,i⋆(µ)}

Nn,k

2 log
(

1 + (µn,k − µk)2

σ2
n,k

)
≤ ci,i⋆(µ)(Nn, δ) . (3.4)

Aiming at matching the lower bound, we want to derive a family of thresholds satisfying
ci,j(w, δ) ∼δ→0 log (1/δ) . As regards the time dependency, generalizations of the law of the
iterated logarithm suggest we could achieve O(log logn) . Both dependencies are achieved for
known variances [Kaufmann and Koolen, 2021], and we are the first to show it for unknown
variances (Theorem3.5). While simple ideas yield δ-correct thresholds (Section 3.3.1), obtaining
the ideal dependency in δ requires sophisticated concentration arguments (Section 3.3.2).

Similar arguments can be used to calibrate the thresholds used by the EV-GLR stopping
rule. Moreover, δ-correct thresholds for the EV-GLR stopping rule can be obtained by using
the ones calibrated for the GLR stopping rule, and vice-versa (see Jourdan et al. [2023a]).

3.3.1 Simple Ideas

As per-arm concentration results are easier to obtain, we control each term of the sum in (3.4).

Student thresholds Since (µn,i −µi)/σn,i is an observation of the Student distribution TNn,i−1

, a first simple approach involves the quantiles of Student distributions with n degrees of
freedom. A direct union bound over time and arms yields a δ-correct family of thresholds.

Lemma 3.3. Let s > 1 and ζ be the Riemann ζ function. Let a family of thresholds ci,j(Nn, δ) with
value +∞ if n < maxk∈{i,j} t

S
k(δ) and otherwise cSi,j(Nn, δ) = max

{
cS(Nn,i, δ), cS(Nn,j , δ)

}
.

Taking

cS(n, δ) = n log
(

1 + 1
n− 1Q

(
1 − δ

4(K − 1)ζ(s)ns
; Tn−1

)2)
(3.5)

yields a δ-correct family of thresholds for the GLR stopping rule on instances ν ∈ DK
N with mean

µ ∈ S . The stochastic initial times are

∀i ∈ [K], tSi (δ) := inf
{
n ∈ N | Nn,i ≥ max

{
2,
(

δ

4(K − 1)ζ(s)

)1/s
}}

. (3.6)
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Box thresholds As illustrated in Figure 3.1, the Student threshold suffers from a probably
sub-optimal dependence in both log(1/δ) and n . This is why we propose an alternative
method where the union bound is replaced by time-uniform concentration (which has proved
useful to improve both dependencies in different contexts) and the Student concentration by
concentration on the mean and the variance separately. The resulting time-uniform upper
and lower tail concentration inequalities for the empirical variance (Corollary C.8) are of
independent interest. The confidence regions defined by those concentration results have a
product form, i.e. (µn, σ

2
n) ∈ Cn with Cn =

(⊗
i∈[K] Cµ

n,i

)
×
(⊗

i∈[K] Cσ2
n,i

)
where Cµ

n,i and Cσ2
n,i are

intervals such that µn,i ∈ Cµ
n,i and σ2

n,i ∈ Cσ2
n,i for all i ∈ [K] . Thanks to these “box” confidence

regions on (µn, σ
2
n) , Lemma 3.4 yields a δ-correct family of thresholds. The proof of Lemma 3.4

is detailed in Appendix C.1.

Lemma 3.4. Let η0 > 0 , s > 1 , ζ be the Riemann ζ function and, for i ∈ {0,−1} ,W i(x) =
−Wi(−e−x) for x ≥ 1 where (Wi)i∈{0,−1} are the branches of the LambertW function. Define

εµ(n, δ) = 1
n
W−1

(
1 + 2 log

(4(K − 1)ζ(s)
δ

)
+ 2s+ 2s log

(
1 + logn

2s

))
,

1 − ε−,σ(n, δ) = W 0

(
1 + 2(1 + η0)

n

(
log

(4(K − 1)ζ(s)
δ

)
+ s log

(
1 + log1+η0(n)

)))
− 1
n
.

The family of thresholds cBoxi,j (Nn, δ) with value +∞ if n < maxk∈{i,j} t
Box
k (δ) and otherwise

cBoxi,j (Nn, δ) =
∑

k∈{i,j}

Nn,k

2 log
(

1 + εµ(Nn,k, δ)
1 − ε−,σ(Nn,k − 1, δ)

)
(3.7)

yields a δ-correct family of thresholds for the GLR stopping rule on instances ν ∈ DK
N with mean

µ ∈ S . The stochastic initial times are

∀i, tBoxi (δ) = inf
{
n | Nn,i > 1 + e

1+W0

(
2(1+η0)

e

(
log
( 4(K−1)ζ(s)

δ

)
+s log

(
1+

log(Nn,i−1)
log(1+η0)

))
−e−1

)}
.

(3.8)

To derive the Box threshold, we leverage a lower bound on the empirical variance that is
strictly positive (hence informative) thanks to the initial time condition (3.8). As W0(x) ∈
[−1,+∞) , it also yields that Nn,i > 2 . Using thatW0(x) ≈ log(x) − log log(x) , it is asymp-
totically equivalent to 2(1+η0) log(1/δ)

log log(1/δ) . Since the lower bound in Lemma 3.1 suggests that the
stopping time is asymptotically equivalent to T ⋆(ν) log (1/δ) , the condition (3.8) has a vanish-
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ing influence compared to the stopping time. For the parameters used in our simulations (see
Section 3.3.3), (3.8) is empirically satisfied after sampling each arm 16 times for δ = 0.1 and 20
times for δ = 0.001 . Recall thatW−1(x) ≈ x+ log x andW 0(x) ≈ e−x+e−x (see Appendix A).

3.3.2 Beyond Box

While being simpler to derive by controlling each arm independently, the above thresholds
have a worse δ dependency than a more sophisticated approach controlling the joint term (3.4).
Since it is challenging to deal with (3.4), we consider as a proxy the KL divergences for which is
easier to construct martingales, which can improve on the δ dependency. To do so, we “remove”
the minimization step over variances, i.e. consider KL instead of Kinf . Then, we apply the
arguments used to obtain (3.4). Under any sampling rule, to obtain a δ-correct GLR stopping
rule, it suffices to show that the family of thresholds is such that the following time-uniform
concentration inequality holds for all ν ∈ DK

N with mean µ ∈ S: with probability 1 − δ ,

∀n ∈ N,∀i ̸= i⋆(µ),
∑

j∈{i,i⋆(µ)}
Nn,jKL((µn,j , σ

2
n,j), (µj , σ

2
j )) ≤ ci,i⋆(µ)(Nn, δ) . (3.9)

KL thresholds First, we derive time-uniform concentration results on the summation of KL di-
vergences. Then, applied to our setting, it yields a δ-correct family of thresholds (Theorem 3.5).

Theorem 3.5. Let η1 > 0 , γ, s > 1 . Let εµ , ε−,σ as in Lemma 3.4 with δ̃ = δ
3 and (tBoxi )i as in

(3.8), and define 1 + ε+,σ(n, δ) =

W−1

(
1 + 2(1 + η1)

n

(
log

(12(K − 1)ζ(s)
δ

)
+ s log

(
1 + log1+η1(n)

)))
− 1
n
.

For all n and all i ∈ [K] , define nn,i = γ⌊logγ Nn,i⌋ , t̄n,i = inf {n | Nn,i = nn,i} ,

µ2
++,n,i = max

±

(
µt̄n,i,i ± 2σt̄n,i,i

√
εµ(nn,i, δ)

1 − ε−,σ(nn,i − 1, δ)

)2

,

σ2
±,n,i = σ2

t̄n,i,i

1 ± ε±,σ(nn,i − 1, δ)
1 ∓ ε∓,σ(nn,i − 1, δ) and Rn,i(δ) =

σ3
+,n,if+

(
g(σ2

+,n,i, µ
2
++,n,i)

)
σ3

−,n,if−
(
g(σ2

−,n,i, µ
2
++,n,i)

) ,
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where f±(x) = 1±
√

1−x√
x

and g(x, y) = 2x
(x+2y+ 1

2 )2 . The family of thresholds cKL
i,j (Nn, δ) with value

+∞ if n < maxk∈{i,j} max{tBoxk (δ/3), tmk (δ)} and otherwise

cKL
i,j (Nn, δ) = 4W−1

1 +
log 2ζ(s)2

δ

4 +
∑

k∈{i,j}

(
s

4 log(1 + logγ Nn,k) + 1
2 log (γRn,k(δ))

)
(3.10)

yields a δ-correct family of thresholds for the GLR stopping rule on instances ν ∈ DK
N with mean

µ ∈ S . The stochastic initial times are

∀i, tmi (δ) = inf

n | Nn,i > 1 + max


es/ log

( 12(K−1)ζ(s)
δ

)
1 + η0

,
e

s/

(
log
( 12(K−1)ζ(s)

δ

)
− 1

2(1+η1)

)
1 + η1


 .

(3.11)

AsW−1(x) ≈ x+log(x) , Theorem 3.5 proves that we can obtain δ-correct thresholdwith the
dependencies c(Nn, δ) ∼δ→0 log (1/δ) and c(Nn, δ) ∼n→+∞ C log logn , which are widely used
in practice for BAI problems. While this dependency is justified for known variances [Kaufmann
and Koolen, 2021], Theorem 3.5 legitimates its use for unknown variances.

To control the KL divergence between the true parameter and the MLE for Gaussian with
unknown variances, our threshold combines two concentration results and is obtained by
covering N with slices of times with geometrically increasing size (referred to as the “peeling”
method). First, we use a crude per-arm concentration step to restrict the estimated parameters
to a region around the true mean and variance. Then, a second result uses the knowledge of
the restriction to get a finer concentration on the weighted sum of KL. It is proved for generic
exponential families by approximating the KL divergence by a quadratic function on this
crude confidence region. In (3.10), Rn,i(δ) represents the cost of this approximation, while
log(1 + logγ Nn,k) is the cost of time-uniform. The initial time condition (3.11) ensures the
monotonicity of the preliminary concentration, and it is of the form Nn,i > 1 + c0(δ) where
c0(δ) > 0 . In our simulations (see Section 3.3.3), (3.11) is empirically satisfied after sampling
each arm twice for all considered δ . The detailed proof is omitted for the sake of space, and
we refer the reader to Appendices F and G in Jourdan et al. [2023a] for more details.

Degenne [2019] derives concentration on the KL divergence of sub-Gaussian d-dimensional
exponential families defined on the natural parameter space ΘD = Rd . This doesn’t include
Gaussian with unknown variance, but our proof builds on his method. The main challenge
was to tackle ΘD ̸= Rd , and we solved it by truncation on the sequence of crude confidence
regions. In generalized linear bandits, truncated Gaussian distributionswere also used to derive
tail-inequalities for martingales “re-normalized” by their quadratic variation [Faury, 2021]. For
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3.3 Calibration of the Stopping Thresholds

general d-dimensional exponential families, Chowdhury et al. [2023] derives concentrations
on the KL divergence between the true parameter and a linear combination of the MLE and
the true parameter. As we are interested in the KL divergence between the true parameter and
the MLE, we cannot leverage their result.

BoB thresholds While the KL thresholds reach the desired dependency in (n, δ) , using (3.9)
instead of (3.4) yields larger thresholds due to additive constants. To overcome this hurdle, we
maximize (3.4) under the per-arm box constraints (Lemma 3.4) and the pairwise non-linear
constraint (Theorem 3.5). The resulting family of thresholds is denoted by BoB (Best of Both)
thresholds. While the BoB thresholds have no closed-form solution, they can be approximated
with non-linear solvers, e.g. Ipopt [Wächter and Biegler, 2006].

Corollary 3.6. Let f(x, y) = (1 + y)x − 1 − log(x) for all (x, y) ∈ (R⋆
+)2 . Let (tBoxi )i and

(tmi )i as in (3.8,3.11). Let εµ, ε−,σ as in Lemma 3.4 and (cKL
i,j )(i,j)∈[K]2 as in (3.10). The family of

thresholds cBoBi,j (Nn, δ) with value +∞ if n < maxk∈{i,j} max{tBoxk (δ/6), tmk (δ/2)} and otherwise
solution of the optimization problem

maximize 1
2
∑

k∈{i,j}
Nn,k log (1 + yk)

such that ∀k ∈ {i, j}, yk ≥ 0, xkyk ≤ εµ(Nn,k, δ/2), xk ≥ 1 − ε−,σ(Nn,k − 1, δ/2) ,

and 1
2
∑

k∈{i,j}
Nn,kf (xk, yk) ≤ cKL

i,j (Nn, δ/2) ,

yields a δ-correct family of thresholds for the GLR stopping rule on instances ν ∈ DK
N with mean

µ ∈ S .

Proof. The proof is obtained by combining the concentration results used to prove Lemma 3.4
and Theorem 3.5, and maximizing the empirical transportation costs under the constraints
imposed by concentration. ■

Since (3.4) is smaller than (3.9), the KL constraint is an upper bound on the BoB thresh-
old. Compared to the box threshold, the maximization underlying the BoB threshold has an
additional constraint. Therefore, we have cBoBi,j (Nn, δ) ≤ min{cBoxi,j (Nn, δ/2), cKL

i,j (Nn, δ/2)} . In
particular, the BoB threshold combines the best of both thresholds for the (n, δ) dependencies.

3.3.3 Simulations

We perform numerical simulations to compare the family of thresholds introduced above.
Taking K = 2 , we consider the instance µ = (0,−0.2) and σ2 = (1, 0.5) . Since we are not
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interested in observing the influence of the sampling rule, the stream of data is uniform between
both arms. For the thresholds, we set the parameters to s = 2 , γ = 1.2 and η0 = η1 = log (1/δ)−1

.

Figure 3.1 – Thresholds for (3.2) as a function of (a) log (1/δ) for n = 5000 and (b) n for δ = 0.01 .

Figure 3.1 plots the dependency of the thresholds in log (1/δ) and n . In Figure 3.1(a),
we are interested by the slopes, and smaller slopes imply better dependency in log (1/δ) . As
expected, Student thresholds have poor performance for both variables. While box thresholds
improve in n , they suffer from a worse dependency in log (1/δ) . KL thresholds circumvent this
issue with the best dependency in log (1/δ) so far. However, they incur a large constant cost
that is worse than the box threshold. As hoped, BoB thresholds combine the good performance
in n of the box threshold and the asymptotic dependency in log (1/δ) of the KL threshold.

The improved theoretical dependency of the BoB threshold comes at the price of a higher
computational cost: on average 400, 600, and 800 times larger than the KL threshold, the
Box threshold, and the Student threshold. When the computational cost is a major concern,
the Box threshold should be used since it has low computational cost and good empirical
performance. Alternatively, we could use the BoB threshold and evaluate the stopping rule
only on a geometric grid of times. This “lazy” stopping rule is still δ-correct.

3.4 Sampling Rule Wrappers

After calibrating the stopping threshold to ensure δ-correctness, we need to design a sampling
rule that requires a few samples before stopping. Given any BAI algorithm for Gaussian with
known variances, we propose two wrappers that can adapt the algorithm to tackle unknown
variances: plugging in the empirical variance or adapting the transportation cost.

When the variances are unknown, a natural idea is to plug in the empirical variances instead
of using the true variances which are now unknown. We can apply this wrapper to any BAI
algorithm. Section 3.2.1 discusses the differences and links between the transportation costs for
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known and unknown variances. Leveraging this interplay, we can adapt a BAI algorithm to use
the transportation costs for unknown variances instead of the ones for known variances. We
can apply this wrapper to any BAI algorithm relying on transportation costs. We illustrate how
to instantiate each wrapper (Section 3.4.1), derive guarantees on their asymptotic expected
sample complexity (Section 3.4.2), and assess their empirical performance (Section 3.4.3).

3.4.1 Instantiating the Wrappers

As initialization, we start by pulling each arm n0 ≥ 2 times.

Track-and-Stop The Track-and-Stop (TaS) algorithm [Garivier and Kaufmann, 2016] com-
putes at each time n > n0K the optimal allocation for the considered transportation costs,
i.e. wn = w⋆(νn;σ) for Gaussian with known variances. Given the vector wn in the simplex,
it uses a so-called tracking procedure to obtain an arm In to sample. We describe and use
the one called C-tracking by Garivier and Kaufmann [2016]. On top of this tracking, a forced
exploration is used to enforce convergence towards the optimal allocation for the true unknown
parameters. Let ε ∈ (0, 1/K] and Σε

K = {w ∈ [ε, 1]K |
∑

i∈[K]wi = 1} . Defining wε
n the ℓ∞

projection of wn on Σε
K , C-Tracking pulls In ∈ arg maxi∈[K]{

∑n
t=n0K wε

t,i −Nn,i} .
Plugging in the empirical variance yields the EV-TaS (Empirical Variance Track-and-Stop)

algorithm which computes wn = w⋆(µ, σn) . Adapting the transportation cost yields the TaS
algorithm which uses wn = w⋆(νn) . Computing w⋆(νn;σn) and w⋆(νn) can be done by solving
an equivalent optimization problemwith one bounded variable, which can itself be numerically
approximated with binary search.

The two resulting sampling rules are summarized in Algorithm 3.1.

1 Input: Per-arm initialization count n0 ≥ 2 .
2 Output: Next arm to sample In and next recommendation ı̂n .
3 Set ı̂n ∈ arg maxi∈[K] µn,i ; // Candidate answer

4 Set wn =

w⋆(νn) if TaS ,
w⋆(νn;σn) if EV-TaS

; // Optimal allocation

5 Set wε
n as the ℓ∞ projection of wn on Σε

K ; // Forced Exploration

6 Set In ∈ arg maxi∈[K]{
∑n

t=n0K wε
t,i −Nn,i} ; // C-Tracking

Algorithm 3.1: Track-and-Stop and Empirical Variance Track-and-Stop algorithms.
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Top Two algorithm At each time n > n0K , the Top Two algorithm β-EB-TCI [Jourdan et al.,
2022] pulls the EB leader BEB

n = ı̂n with probability β . If BEB
n is not sampled, then it pulls

the TCI challenger CTCI
n , i.e. CTCI

n ∈ arg mini ̸=BEB
n

{
C(BEB

n , i; νn, Nn;σ) + logNn,i
} for Gaussian

with known variance.
Plugging in the empirical variance yields the β-EB-EVTCI algorithm which uses

CEVTCI
n ∈ arg min

i ̸=BEB
n

{
W EV

n (BEB
n , i) + logNn,i

}
.

Adapting the transportation cost yields the β-EB-TCI algorithm which computes

CTCI
n ∈ arg min

i ̸=BEB
n

{
Wn(BEB

n , i) + logNn,i

}
.

The two resulting sampling rules are summarized in Algorithm 3.2.

1 Input: Proportion β ∈ (0, 1) , per-arm initialization count n0 ≥ 2 .
2 Output: Next arm to sample In and next recommendation ı̂n .
3 Set ı̂n ∈ arg maxi∈[K] µn,i and Bn = ı̂n ; // Candidate and leader answer

4 Set Cn ∈

 arg mini ̸=BEB
n

{
Wn(BEB

n , i) + logNn,i
} if TCI ,

arg mini ̸=BEB
n

{
W EV

n (BEB
n , i) + logNn,i

} if EVTCI
; // Challenger

5 Set In =

Bn with probability β ,
Cn otherwise

; // Randomized fixed design β

Algorithm 3.2: β-EB-TCI and β-EB-EVTCI algorithms.

The two wrappers could be used similarly on other Top Two algorithms (see Section 2.2).
It is straightforward to plug in the empirical variance and to adapt the transportation costs.
For the Bayesian approach, a posterior distribution over Gaussian with unknown variance is
required (see Honda and Takemura [2014], Cowan et al. [2017]), yet it is unknown if they
satisfy the “good” properties to obtain asymptotic ( β-)optimality. For the frequentist approach,
it is simpler since we adapt the transportation costs. For example, the UCB indices can be
written as Un,i = µn,i + σn,i

√
exp(2g(n)/Nn,i) − 1 . It is an open problem to study IDS for other

distributions than Gaussian with known variance. For Gaussian with unknown variance, it is
defined as βn(i, j) = 1/2 when µn,i ≤ µn,j , and

βn(i, j) = Nn,i

2Wn(i, j) log
(

1 + (µn,i − ui,j(νn, Nn))2

σ2
n,i

)
otherwise ,
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with ui,j(ν, w)defined in Lemma 2.3 as theminimizer of the transportation cost (see Section 3.2.2
for a discussion on how to compute it numerically). Similarly, the optimal design BOLD is
defined as in (2.15), i.e.

In = Bn if
∑

i ̸=Bn

K−
inf(νBn , uBn,i(νn, Nn))

K+
inf(νi, uBn,i(νn, Nn))

> 1 and In = Cn otherwise .

3.4.2 Sample Complexity Upper Bound

Definition 3.7 introduces the notion of asymptotically tight family threshold [Jourdan et al.,
2022], which corresponds informally to ci,j(N, δ) ∼δ→0 log(1/δ) . As hinted in Figure 3.1(a),
the KL and the BoB thresholds are asymptotically tight, but not the Student and Box thresholds.

Definition 3.7. A family of thresholds (ci,j)(i,j)∈[K]2 is said to be asymptotically tight if there exists
α ∈ [0, 1) , δ0 ∈ (0, 1] , functions f, T̄ : (0, 1] → R+ and C independent of δ satisfying: (1) for all
(i, j) ∈ [K]2 , δ ∈ (0, δ0] andN ∈ NK such that ∥N∥1 ≥ T̄ (δ) , then ci,j(N, δ) ≤ f(δ) +C∥N∥α

1
, (2) lim supδ→0 f(δ)/ log(1/δ) ≤ 1 and lim supδ→0 T̄ (δ)/ log(1/δ) = 0 .

Combined with the GLR stopping rule using the KL or the BoB thresholds, Theorem 3.8
shows that TaS (resp. β-EB-TCI) is a δ-correct and asymptotically optimal (resp. β-optimal)
algorithm.

Theorem 3.8. Using the GLR stopping rule with an asymptotically tight family of thresholds,
TaS (resp. β-EB-TCI with n0 ≥ 4 ) satisfies that, for all ν ∈ DK

N with mean µ ∈ RK such that
|i⋆(µ)| = 1 (resp. mini ̸=j |µi − µj | > 0 ),

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ T ⋆(ν) (resp. T ⋆

β (ν) ) .

Proof. For Gaussian with unknown variance, it is possible to show similar regularities of the
characteristic times as for the case when the variance is known. In other words, we prove that a
similar result as Lemma 2.10 holds for Gaussian with unknown variance. The main reason is
that the Kinf functions are closely connected, up to a function x 7→ log(1 + x) which preserves
the desired properties. Among other things, Lemma 2.10 in Chapter 2 also holds for Gaussian
with unknown variance.

As regards β-EB-TCI, the proof follows along the same lines as the one in Section 2.3 of
Chapter 2, which was written in sufficient generality to cope for many distributions. Similarly
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as in Appendix B.12 (resp. Appendix B.13), for Gaussian with unknown variance, the EB leader
(resp. the TCI challenger) answer satisfy the Properties 2.14 and 2.17 (resp. Properties 2.15
and 2.20).

As regards TaS, the proof uses similar arguments as the ones used in Garivier and Kaufmann
[2016]. The sole technical modification lies in the definition of the concentration event which
should also control the empirical variance. This can be done with the same concentration
results that yield the family of Box thresholds (Lemma 3.4).

In both cases, we refer the reader to Appendix H in Jourdan et al. [2023a] for more details.
■

Using the same arguments as in the proof of Theorem 3.8, it is also possible to derive a
similar result involving T ⋆(ν;σ) (resp. T ⋆

β (ν;σ) ) for EV-TaS (resp. β-EB-EVTCI with n0 ≥ 6 )
combined with the EV-GLR stopping rule using an asymptotically tight threshold. However,
since T ⋆(ν;σ) < T ⋆(ν) and T ⋆

β (ν;σ) < T ⋆
β (ν) , neither of these algorithms can be δ-correct.

Otherwise, it would yield a contradiction with the lower bound in Lemma 3.1. Moreover,
as there exist instances for which the ratios T ⋆(ν)/T ⋆(ν;σ) and T ⋆

β (ν)/T ⋆
β (ν;σ) are arbitrarily

large, multiplying the thresholds by a problem independent constant is not sufficient to obtain
δ-correctness, as expressed in Theorem 3.9.

Theorem 3.9. There exists a sampling rule such that: for all asymptotically tight family of thresholds
(ci,j)(i,j)∈[K]2 and problem independent constant α0 > 0 , combining this sampling rule with the
EV-GLR stopping rule using (α0ci,j)(i,j)∈[K]2 yields an algorithm which is not δ-correct.

Inspired by Section 3.3, we could also propose families of thresholds (EV-Student, EV-Box,
and EV-BoB) which are δ-correct for the EV-GLR stopping rule but are not asymptotically tight
(Theorem 3.9). Still, in our experiments, the empirical proportion of error is lower than δ even
when using a heuristic, asymptotically tight threshold.

Based on Theorems 3.8 and 3.9, algorithms obtained by adapting the transportation costs
enjoy stronger theoretical guarantees than the ones plugging in the empirical variance.

3.4.3 Experiments

We compare the empirical performance of the two wrappers for different BAI algorithms
in the moderate regime ( δ = 0.01 ). As benchmarks, we consider FHN2 (procedure 2 in
Fan et al. [2016]), uniform sampling, and “fixed” sampling which is an oracle playing with
proportions w⋆(ν) . FHN2 is an elimination strategy that repeatedly samples all arms until
only one arm is left. Its elimination mechanism is calibrated by resorting to continuous-time
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Figure 3.2 – Empirical stopping time on Gaussian (top) random instances withK = 10 , (left) standard
instance (µ, σ2) = ((1.0, 0.85, 0.8, 0.7, 0.65) , (1.0, 0.6, 0.5, 0.4, 0.35)) and (right) easy instance (µ, σ2) =
((1.0, 0.2, 0.15, 0.1, 0.05) , (1.0, 0.05, 0.05, 0.05, 0.05)) . Lower bound is T ⋆(ν) log(1/δ) .

approximations. Therefore, FHN2 is only asymptotically δ-correct and has no guarantees on
the sample complexity. Based on Degenne et al. [2019] and Wang et al. [2021], plugging in the
empirical variance yields EV-DKM and EV-FWS, while DKM and FWS refer to the algorithms
using the transportation costs for unknown variances. Even though those instances are not
analyzed, we believe that similar guarantees on the sample complexity can be shown.

Algorithms obtained by plugging in the empirical variance use the EV-GLR stopping rule,
while the GLR stopping rule is used by the ones with adapted transportation cost and uniform
sampling. We consider the stylized stopping threshold c(n, δ) = log ((1 + logn)/δ) , which
was proposed in Garivier and Kaufmann [2016]. While it doesn’t ensure δ-correctness of the
stopping threshold, it is asymptotically tight and yields an empirical error that is orders of
magnitude lower than δ . Top Two algorithms use β = 0.5 .

We assess the performance on 1000 random instanceswithK = 10 such that (µ1, σ
2
1) = (0, 1)

. For i ̸= 1 , we set (µi, σ
2
i ) = (−∆i, ri) where ∆i ∼ U([0.2, 1.0]) and ri ∼ U([0.1, 10])

. To illustrate the two regimes for T ⋆(ν)/T ⋆(ν;σ) , we consider a standard instance with

93



Dealing with Unknown Variances

T ⋆(ν)/T ⋆(ν;σ) ≈ 1.015 and an easy instance with T ⋆(ν)/T ⋆(ν;σ) ≈ 1.384 . We average over
5000 runs.

In Figure 3.2, we observe that algorithms obtained by plugging in the empirical variance
yield similar results as the ones using the adapted transportation cost, and slightly better
performance on the easy instance. Moreover, those wrapped BAI algorithms outperform
uniform sampling and are on par with “fixed” sampling. On random instances, FHN2 has
similar performance to the wrapped BAI algorithms, but it wastes precious samples on easy
instances.

3.5 Discussion

In Chapter 3, we presented two approaches to deal with unknown variances, either by plugging
in the empirical variance or by adapting the transportation costs. New time-uniform concen-
tration results were derived to calibrate our two stopping rules. Then, we showed theoretical
guarantees and competitive empirical performance of our two sampling rules wrappers on two
existing algorithms.

While the literature abounds with designs of sampling rules, the optimal calibration of
stopping rules is a most pressing issue as it leads to lower empirical stopping time. While
calibrated thresholds have been derived with (near) optimal dependency in δ , those thresholds
are known to be too conservative in the moderate confidence regime where their empirical error
rate is orders of magnitude lower than δ . Avoiding this bottleneck on the expected sample
complexity is an interesting open problem.

In the fixed-budget setting, characterizing the impact of not knowing the variances on the
probability of misidentifying the best arm is still an open problem. While similar approaches
might be used to deal with the unknown variances, the resulting algorithms might not enjoy
similar theoretical guarantees and empirical performance.

Finally, while this chapter goes beyond the class of one-parameter exponential families
used in Chapter 2, it still considers a parametric class of distributions. In many applications,
this is too restrictive, and non-parametric classes of distributions should be considered. It is
natural to wonder whether the approach of adapting the transportation costs can be extended.
In Chapter 4, we will answer in the affirmative for the class of bounded distributions.
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Chapter 4

Beyond Parametric Distributions

In Chapter 4, we study the vanilla BAI problem for the non-parametric class of bounded
distributions, as studied in Chapters 2 and 3 for parametric distributions. The presented results
were published in Jourdan et al. [2022].

The Top Two algorithms arose as an adaptation of Thompson sampling to best arm identifica-
tion in multi-armed bandit models [Russo, 2016] for parametric families of arms. Despite their
good empirical performance, theoretical guarantees for fixed-confidence best-arm identification
are only known for parametric distributions. In this chapter, we are interested in (near) optimal
and computationally efficient strategies when the distributions belong to a non-parametric
class of distributions. As an example motivated by applications in agriculture, we consider
the set of bounded distributions. We instantiate several Top Two algorithms introduced in
Chapter 2 for this class and prove their asymptotic β-optimality.
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4.1 Introduction

As detailed in Chapter 1, the motivation to study BAI for Gaussian distributions with non-
parametric distributions comes from practical consideration. For applications to online mar-
keting such as A/B testing [Kaufmann et al., 2014, Russac et al., 2021] assuming Bernoulli
or Gaussian arms is fine, but more sophisticated distributions arise in other fields such as
agriculture. In Section 4.4, we consider a crop-management problem: a group of farmers
wants to identify the best planting date for a rainfed crop. The reward (crop yield) can be
modeled as a complex distribution with multiple modes, but upper bounded by a known yield
potential. Therefore, sequentially identifying the best planting date calls for efficient best-arm
identification algorithms for the class of bounded distributions with a known range.

We consider the set D[0,B] of bounded distributions with support in [0, B] with B > 0 ,
hence DK = DK

[0,B] . Importantly, all distributions in κ ∈ D have a finite mean denoted bym(κ)
. In the following, we assume that the set I = {m(κ) | κ ∈ D} of possible means is such that
I ⊆ (0, B) , i.e.we exclude the Dirac distributions in {0} and {B} . Let ν ∈ DK with mean
µ = m(ν) such that the set of arms with largest mean i⋆(µ) := arg maxi∈[K] µi is reduced to a
singleton denoted by i⋆ (or i⋆(µ) by abusing notation), i.e. S = {µ ∈ (0, B)K | |i⋆(µ)| = 1} .

A fixed-confidence algorithm is defined by a sampling rule, a recommendation rule, and
a stopping rule. At time n , we denote by ı̂n the candidate answer and by In the arm to pull.
The stopping rule (and stopping time τδ ) using a fixed confidence level 1 − δ ∈ (0, 1) which
should ensure δ-correctness, i.e. Pν (τδ < +∞, ı̂τδ

̸= i⋆(µ)) ≤ δ for all instances ν ∈ DK with
mean µ ∈ S .

As discussed in Section 1.4.1, the δ-correctness requirement leads to a lower bound on the
expected sample complexity on any instance.

Lemma 4.1 (Garivier and Kaufmann [2016] and Agrawal et al. [2020]). An algorithm
which is δ-correct on all problems in DK

[0,B] satisfies that, for all ν ∈ DK
[0,B] with mean µ ∈ S ,

Eν [τδ] ≥ T ⋆(ν) log(1/(2.4δ)) .

For bounded distributions, Lemma 4.1 shows that T ⋆(ν) is the asymptotic complexity of
the BAI problem, where

T ⋆(ν)−1 = sup
w∈ΣK

min
j ̸=i

C(i, j; ν, w) with

C(i, j; ν, w) = 1 (µi ≥ µj) inf
u∈(0,B)

{
wiK−

inf(νi, u) + wjK+
inf(νj , u)

}
.

For one-parameter exponential families or Gaussian with unknown variance, the Kinf functions
have a closed-form expression that can be computed efficiently. For bounded distributions,
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this is not the case, yet the dual formulation obtained by Honda and Takemura [2010] offers a
more explicit expression, i.e.

K+
inf(κ, u) = 1 (m(κ) ≤ u) sup

λ∈[0,1]
EX∼κ

[
log

(
1 − λ

X − u

B − u

)]
and (4.1)

K−
inf(κ, u) = 1 (m(κ) ≥ u) sup

λ∈[0,1]
EX∼κ

[
log

(
1 + λ

X − u

u

)]
,

which are computationally expensive to evaluate when κ is a continuous distribution.
As in previous chapters, we say that an algorithm is asymptotically optimal (resp. β-

optimal) on DK if it is δ-correct and its sample complexity matches that lower bound, i.e. for all
ν ∈ DK

[0,B] such that µ ∈ S , lim supδ→0 Eν [τδ]/ log(1/δ) ≤ T ⋆(ν) (resp. T ⋆
β (ν) ). For β ∈ (0, 1)

, the definition of T ⋆
β (ν) is the same as T ⋆(ν) with the additional constraint on the outer

maximization that wi⋆ = β , hence T ⋆(ν) = minβ∈(0,1) T
⋆
β (ν) . For bounded distributions, we

show that T ⋆
1/2(ν) ≤ 2T ⋆(ν) holds (Russo [2016] showed it only for one-parameter exponential

families).

Contribution 4.1. In Chapter 4, we propose a calibration of the GLR stopping rule and a concrete
instantiation of the Top Two algorithms based on a Dirichlet sampler for the randomized variants.

• We prove in Theorem 4.3 that those algorithms are asymptotically β-optimal. The proof follows
the unified analysis provided in Chapter 2, hence showing that the sufficient properties of the
leader and the challenger are satisfied. In particular, this requires deriving strong properties
on the Kinf functions for bounded distributions and on the Dirichlet sampler, which are of
independent interest.

• We report results from numerical experiments on a challenging non-parametric task using
real-world data from a crop-management problem for various members of the Top Two family
of algorithms. Most of them perform significantly better than the baselines.

4.1.1 GLR Stopping Rule

For an arm i , we denote its number of pulls by Nn,i :=
∑

t∈[n−1] 1 (It = i) , its empirical
distribution by νn,i := N−1

n,i

∑
t∈[n−1] δXt,It

1 (It = i) and its empirical mean by µn,i := m(νn,i) .
Recall that Fn denotes the whole history before time n , which includes internal randomization
of the algorithm at time n . For all Fn-measurable sets A , let P|n[A] := P[A | Fn] be its
probability.

As a candidate answer, we use ı̂n ∈ i⋆(µn) , i.e. the empirical best arm (EB). For the stop-
ping rule, we use the GLR stopping rule (see Section 1.4.2 for more details). For bounded
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distributions, the GLR can be written as mini ̸=ı̂n Wn(̂ın, i) , where the empirical transportation
cost between arm i and arm j is defined as

Wn(i, j) = C(i, j; νn, Nn) = 1 (µn,i ≥ µn,j) inf
u∈(0,B)

{
Nn,iK−

inf(νn,i, u) +Nn,jK+
inf(νn,j , u)

}
.

(4.2)
Given a threshold function c(n, δ) , the GLR stopping rule is

τδ = inf
{
n ∈ N | min

j ̸=ı̂n

Wn(̂ın, j) > c(n− 1, δ)
}
. (4.3)

Lemma 4.2 gives a threshold ensuring that the GLR stopping rule is δ-correct for all δ ∈ (0, 1)
, independently of the sampling rule. Its proof relies on an elegant martingale construction
proposed by Agrawal et al. [2021b], and it is detailed in Appendix D.1.

Lemma 4.2. Let δ ∈ (0, 1) . Given any sampling rule, using the threshold

c(n, δ) = log (1/δ) + 2 log (1 + n/2) + 2 + log(K − 1) (4.4)

with the stopping rule (4.3) yields a δ-correct algorithms for the set of bounded distributions with
mean in S .

Empirical transportation costs Evaluating the stopping rule requires the computation of the
empirical transportation costsWn(i, j) defined in (4.2). As discussed above, the Kinf functions
for bounded distributions are more expensive to compute than their counterparts for one-
parameter exponential families or Gaussian with unknown variance. Fortunately, we only
evaluate those functions on empirical distributions, which are supported on a finite set, i.e.

Nn,jK+
inf(νn,j , u) = 1 (µn,j ≤ u) sup

λ∈[0,1]

∑
t∈[n−1]

1 (It = j) log
(

1 − λ
Xt,j − u

B − u

)
and

Nn,iK−
inf(νn,i, u) = 1 (µn,i ≥ u) sup

λ∈[0,1]

∑
t∈[n−1]

1 (It = i) log
(

1 + λ
Xt,i − u

u

)
.

The minimization in λ can be computed using a zero-order optimization algorithm (e.g. Brent’s
method Brent [2013]). The same optimizer can be used to compute the minimization in u ∈
(0, B) featured inWn(i, j) . By nesting those optimizations of univariate functions on a bounded
interval, the computation ofWn(i, j) in the stopping rule dominates the computational cost of
our Top Tow algorithms (except the RS challenger, see below). Our experiments suggest that
using (4.3) is twice as computationally expensive as the LUCB-based stopping rule. It is a mild
price for improving the empirical stopping time. Algorithms for non-parametric distributions

98



4.2 Top Two Sampling Rules

are bound to be computationally more expensive than their parametric counterpart, where a
vector of sufficient statistics can summarize the history Fn .

4.2 Top Two Sampling Rules

As recalled in Algorithm 4.1, a Top Two sampling rule is defined by four components: leader
answer, challenger answer, target allocation, and mechanism to reach it. We refer the reader to
Section 2.2 for more details on specific instances of those four choices, which were written in a
generality that includes non-parametric classes of distributions such as bounded distributions.

Dirichlet sampler The TS leader and RS challenger require a sampler Πn (see Section 2.2).
Our proposed Dirichlet sampler for bounded distributions in [0, B] has a product form: Πn =
Πn,1 × · · · × Πn,K where Πn,i leverages Hn,i := (X1,i, . . . , XNn,i,i) , which is the history of
samples from arm i collected in the first n− 1 rounds. Let ν̃n,i denote the empirical cdf of Hn,i

augmented by the known bounds on the support, i.e. {0, B} . For each arm i , Πn,i outputs a
random re-weighting of ν̃n,i . Concretely, letting (w1, . . . , wNn,i+2) be drawn from a Dirichlet
distribution Dir(1Nn,i+2) , a call to the sampler Πn,i returns∑

t∈[Nn,i]
wtXt,i +BwNn,i+1 .

This sampler is inspired by that used in the Non Parametric Thompson Sampling (NPTS)
algorithm proposed by Riou and Honda [2020] for regret minimization in bounded bandits,
with the notable difference that we have to add both 0 and B in the support, while NPTS only
adds the upper bound B . Since adding 0 is only necessary to ensure that the re-sampling
procedure stops (i.e. RS challenger), the TS leader could use a sampler based directly on Hn,i .

Leader answer The EB leader selects BEB
n = ı̂n ∈ arg maxi∈[K] µn,i . The UCB leader uses

BUCB
n ∈ arg maxi∈[K] Un,i with

Un,i =
{
u ∈ [µn,i, B] | Nn,iK+

inf(νn,i, u) ≤ g(n)
}
,

where g(n) = Θ(logn) . In the regret minimization setting, the Kinf -UCB algorithm was
introduced by Cappé et al. [2013], then analyzed by Agrawal et al. [2021a] for g(n) = logn+
log logn. Using the Dirichlet sampler, the TS leader chooses BTS

n ∈ i⋆(θn) with θn ∼ Πn .
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1 Input: Leader answer LB (e.g. EB, UCB or TS with Dirichlet sampler), challenger
answer LC (e.g. TC, TCI or RS with Dirichlet sampler), target allocation LT

(e.g. fixed, IDS or BOLD) and how to reach the target LR (e.g. randomized
or tracking).

2 Output: Next arm to sample In .
3 Get Bn ∈ [K] from LB ; // Leader answer
4 Get Cn ∈ [K] \ {Bn} from LC ; // Challenger answer
5 Get βn(Bn, Cn) ∈ [0, 1] from LT ; // Target allocation
6 Get In ∈ {Bn, Cn} from LR using βn(Bn, Cn) ; // Reaching the target

Algorithm 4.1: Top Two sampling rule for bounded distributions.

Challenger answer The TC and TCI challengers consider

CTC
n ∈ arg min

i ̸=Bn

Wn(Bn, i) and CTCI
n ∈ arg min

i ̸=Bn

{Wn(Bn, i) + logNn,i} .

Using the Dirichlet sampler, the RS challenger takes i.e. CRS
n ∈ arg maxi∈[K] θn,i with θn ∼ Πn

until Bn /∈ i⋆(θn) .

Target allocation over arms In terms of fixed design, one can either fix the proportion to β or
sample the least sampled arm. Note that

arg min
i∈{Bn,Cn}

Nn,i ̸= arg max
i∈[K]

C(Bn, Cn; νn, Nn + 1i) ̸= arg max
i∈[K]

∂C(Bn, Cn; νn, Nn)
∂wi

,

for distributions other than Gaussian with unit variance, hence other fixed designs could be
defined. It is an open problem to study IDS for other classes of distributions than Gaussian with
known variance. For bounded distributions, it is defined as βn(i, j) = 1/2 when µn,i ≤ µn,j ,
and

βn(i, j) = Nn,iK−
inf(µn,i, ui,j(νn, Nn))

Wn(i, j) otherwise ,

with ui,j(ν, w)defined in Lemma 2.3 as theminimizer of the transportation cost (see Section 4.1.1
for a discussion on how to compute it numerically). Similarly, the optimal design BOLD is
defined as in (2.15), i.e.

In = Bn if
∑

i ̸=Bn

K−
inf(νBn , uBn,i(νn, Nn))

K+
inf(νi, uBn,i(νn, Nn))

> 1 and In = Cn otherwise .

Mechanism to reach the target allocation Both randomization and tracking can be used since
they yield similar empirical performance and theoretical guarantees.
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4.3 Asymptotic Sample Complexity Upper Bound

In BAI for bounded distributions with known support [0, B] , Theorem 4.3 shows the asymptotic
β-optimality of many Top Two sampling rule when combined with the GLR stopping rule.

Theorem 4.3. Let (β, δ) ∈ (0, 1)2 . Combined with the GLR stopping rule (4.3) using the thresh-
old (4.4), the Top Two sampling rule (Algorithm 2.1) using (i) any leader in {EB,UCB, TS} , (ii)
any challenger in {TC, TCI,RS} , (iii) the fixed design β , and (iv) randomization (or tracking
for a deterministic leader/challenger pair, see Section 2.2.4) yields an algorithm which is δ-correct
and satisfies that, for all ν ∈ DK with mean µ ∈ RK such that ∆min(µ) := mini ̸=j |µi − µj | > 0 ,

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ T ⋆

β (ν) .

Choosing a Top Two algorithm Choosing our favorite Top Two instances requires further
empirical and computational considerations. Computing the EB leader has a constant com-
putational cost, while the TS leader is computationally costly for large time n since it requires
sampling from a Dirichlet distribution with Nn,i + 2 parameters for each arm i . On the chal-
lenger side, the RS challenger is computationally very expensive for large time n as the sampler
becomes concentrated around the true mean vector. On the contrary, by leveraging computa-
tions done in the stopping rule (4.3), the TC and TCI challengers can be computed in constant
time. Based on these computational considerations, the most appealing Top Two algorithm for
bounded distribution appears to be EB-TC-β . But experiments performed in Section 4.4 reveal
its lack of robustness, and for bounded distributions the best trade-off between robustness and
computational complexity is EB-TCI-β . More generally, TS-TC-β can also be a good choice
provided access to an efficient sampler.

Proof outline The proof of Theorem 4.3 follows from the same unified analysis as presented
in Section 2.3 of Chapter 2. In Jourdan et al. [2022], we proposed the unified analysis for
fixed design β precisely to tackle bounded distributions. We present important regularities
properties (Section 4.3.1), mention why the analysis still works for EB-TC-β (Section 4.3.2),
and explain why the Dirichlet sampler has the desired properties for bounded distributions
(Section 4.3.3).
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4.3.1 Regularity Properties

For detailed proof of the following properties for bounded distributions D[0,B] , we refer the
reader to Appendix F in Jourdan et al. [2022].

The Kinf functions When studying a class of non-parametric distributions (such as bounded
distributions), we need to derive strong regularity properties on the Kinf functions. This is a
key challenge to tackle BAI with classes of non-parametric distributions. It is an open problem
to clearly define what is the minimal set of regularity properties on the class of non-parametric
distribution D to obtain sufficient regularity to study BAI algorithms, such as Track-and-Stop
or Top Two algorithms.

Since K−
inf(κ, u) = K+

inf(κB−X , B−u) where κB−X is the pushforwardmeasure of κ through
x → B − x , we can restrict the analysis to studying K+

inf . First, it is required to show the dual
formulation of the K+

inf as in (4.1), whichwas done byHonda and Takemura [2010]. Leveraging
this dual formulation, we obtain that (κ, u) → K+

inf(κ, u) is continuous on D[0,B] × [0, B) (by
adapting a method proposed by Agrawal et al. [2021b] in a slightly different setting) and
convex on D[0,B] × [0, B] .

Lemma 4.4 (Theorems 5 and 6 in Honda and Takemura [2010]). Let κ ∈ D[0,B] . Then,
u → K+

inf(κ, u) is differentiable on (m(κ), B] and

∂K+
inf(κ, u)
∂u

= λ+
⋆ (κ, u) with λ+

⋆ (κ, u) = arg max
λ∈[0,(B−u)−1]

EX∼κ [log (1 − λ(X − u))] . (4.5)

Let u+(κ) = B−EX∼κ[(B−X)−1]−1 ≥ m(κ) . Then, (i) λ+
⋆ (κ, u) = 0 if and only if u ≤ m(κ)

, (ii) u ∈ (m(κ), u+(κ)] implies that EX∼κ[(1 − λ+
⋆ (κ, u)(X − u))−1] = 1 and (iii) λ+

⋆ (κ, u) =
(B − u)−1 if and only if u ≥ u+(κ) .

Our key novel result on the regularity of u → K+
inf(κ, u) is its strict convexity on (m(κ), B]

(Lemma 4.5). The proof of Lemma 4.5 is detailed in Appendix D.2 and it differs from the proof
strategy proposed by Agrawal et al. [2021b] in a slightly different setting.

Lemma 4.5. Let κ ∈ D[0,B] . The function u → K+
inf(κ, u) is strictly convex and increasing on

(m(κ), B] , and null on [0,m(κ)] .

Characteristic times Leveraging the regularity properties on the Kinf functions, we obtain
regularity properties on the transportation costs and on the characteristic times. In a nutshell,
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we proved similar properties for bounded distributions as the ones detailed for Gaussian with
known variance in Lemma 2.10.

4.3.2 A Pedagogical Example: EB-TC

In Section 2.3.5, we presented the proof for the EB leader and the TC challenger. It is straight-
forward to see that the same arguments can be applied for the EB leader to obtain both Proper-
ties 2.14 and 2.17.

For the TC challenger, the regularity properties of the transportation costs (see Section 4.3.1
for details) will allow to prove an equivalent of Lemma 2.22. To prove an equivalent of
Lemma 2.23, we rely on similar arguments and use that K+

inf(κ, u) ≤ − log(1 − u/B) for all
(κ, u) ∈ D[0,B] × [0, B) (Lemma 14 in Honda and Takemura [2010]). Combining those two
lemmas on the growth of the empirical transportation costs, we can show that Property 2.14
holds. Thanks to the equivalent of Lemma 2.10, the proof of Property 2.20 is similar. Let i
such thatNn,i/Nn,i⋆ ≥ γ+w⋆

β,i/β , and j /∈ {i⋆, i} such thatNn,j/Nn,i⋆ ≤ w⋆
β,j/β (which exists).

Using that w → C(i⋆, i;κ,w) is increasing and the equality at equilibrium, we obtain that

Wn(i⋆, i)
Wn(i⋆, j) ≥

C(i⋆, i; νn, w
⋆
β + γβ1{i})

C(i⋆, j; νn, w⋆
β) ≈

n→+∞

C(i⋆, i; ν, w⋆
β + γβ1{i})

C(i⋆, j; ν, w⋆
β)

=
C(i⋆, i; ν, w⋆

β + γβ1{i})
C(i⋆, i; ν, w⋆

β) > 1 .

SinceWn(i⋆, i) > Wn(i⋆, j) , we conclude that Cn ̸= i (i.e. Property 2.20 holds).
The generalization to the UCB leader or the TCI challenger is straightforward. We refer the

reader to Appendix D.1 in Jourdan et al. [2022] for more details.

4.3.3 Dirichlet Sampler

As in Section 2.3.5, we prove the desired properties for the TS leader and RS challenger. Since

max
u∈R

{PΠn|n(θn,i ≥ u)
∏
j ̸=i

PΠn|n(θn,j ≤ u)} ≤ PΠn|n(i ∈ i⋆(θn)) ≤ 1 − max
j ̸=i

PΠn|n(θn,i < θn,j) ,

we need to control (i) the Boundary Crossing Probability (BCP) of an arm, i.e. PΠn|n(θn,j ≤ u)
and PΠn|n(θn,i ≥ u) where u is a fixed threshold, and (ii) the probabilities that the empirical
ordering is reversed, i.e. PΠn|n(θn,i < θn,j) when µi > µj . Lemma 4.6 shows that we can obtain
guarantees on PΠn|n(θn,i < θn,j) by using BCP (see Lemma 64 in Jourdan et al. [2022]).
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Lemma 4.6. Let x ∈ arg maxu∈R Pκ2(θ2 ≥ u)Pκ1(θ1 ≤ u) and g(u) = u(1 − log(u)) for all
u ∈ [0, 1] . Then, Pκ2(θ2 ≥ x)Pκ1(θ1 ≤ x) ≤ P(κ1,κ2)(θ2 ≥ θ1) ≤ g (Pκ2(θ2 ≥ x)Pκ1(θ1 ≤ x)) .

Combining Lemma 4.6 with the proof technique of Lemma 15 in Riou and Honda [2020] to
derive an upper bound on the BCP, we show the following concentration result

Pθn∼Πn|n(θn,j ≥ θn,i) ≤ f
(
C(i, j; νn, Nn + 2 · 1[K])

)
, (4.6)

where f(x) = (1 + x) exp(−x) . Using (4.6), we can show that Properties 2.14 and 2.17 hold for
the TS leader answer. Property 2.15 is proven by using (4.6) and the coarse anti-concentration
result, i.e. Pθn∼Πn|n(θn,i ≥ u) ≥ (1 − u/B)Nn,i+1 . Property 2.20 is proven by using (4.6) and
a tight anti-concentration result, i.e. Pθn∼Πn|n(θn,i ≥ θn,i⋆) ⪆ exp(−Wn(i⋆, i)) . We refer the
reader to Appendices D.2 and G in Jourdan et al. [2022] for more details.

4.4 Experiments

We assess the empirical performance of our Top Two algorithms on the DSSAT simulator1
[Hoogenboom et al., 2019] and on Bernoulli instances in the moderate regime ( δ = 0.01 ).
The set DB of Bernoulli distributions is an example of a one-parameter exponential family
contained in D[0,1] . The stopping rule (4.3) is used with the threshold c(n, δ) defined in (4.4)).
As the Top Two sampling rules, we present results for EB-TC-1/2 , EB-TCI-1/2 , TS-TC-1/2, and
TS-TCI-1/2 . We will omit the target β = 1/2 in their names.

As benchmarks for the sampling rule, we use KL-LUCB with Bernoulli divergence [Kauf-
mann and Kalyanakrishnan, 2013] (whose theoretical guarantees extend to any distribution
bounded in [0, 1] ), “fixed” sampling that is an oracle playing with proportions w⋆(ν) and
uniform sampling. We also propose a heuristic adaptation of the DKM algorithm [Degenne
et al., 2019] (which is asymptotically optimal for one-parameter exponential families) to tackle
bounded distributions, which we denote by Kinf -DKM, and uses forced exploration instead of
optimism. Inspired by the regret minimization algorithm Kinf -UCB [Agrawal et al., 2021a], we
propose its LUCB variant Kalyanakrishnan et al. [2012], named Kinf -LUCB. The upper/lower
confidence indices are obtained by inverting of K±

inf , i.e.

∀i ̸= ı̂n, Un,δ,i = max
{
u ∈ [µn,i, B] | Nn,iK+

inf(Fn,i, u) ≤ c(n− 1, δ)
}
,

Ln,δ,̂ın = min
{
u ∈ [0, µn,̂ın ] | Nn,̂ınK−

inf(Fn,̂ın , u) ≤ c(n− 1, δ)
}
.

1DSSAT is an Open-Source project maintained by the DSSAT Foundation, see https://dssat.net.
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Figure 4.1 – Empirical stopping time (a) on scaled DSSAT instances with their density and mean (b).
Lower bound is T ⋆(ν) log(1/δ) . “stars” equal means.

LUCB-based algorithms [Kalyanakrishnan et al., 2012] use their own stopping rule, namely they
stop when Ln,δ,̂ın ≥ maxj ̸=ı̂n Un,δ,j . For Bernoulli distributions, Kinf -LUCB recovers KL-LUCB.
While being asymptotically optimal for heavy-tailed distributions [Agrawal et al., 2020] with
an adequate stopping threshold, the Track-and-Stop algorithm is computationally intractable
for bounded distributions as it requires to compute w⋆(νn) at each time n (or on a geometric
grid). We hence omit it from our experiments.

Crop-management task In DSSAT, each arm corresponds to a choice of planting date and
fixed soil conditions. To illustrate the problem’s difficulty, we represent an empirical estimate
(independent of the runs of our algorithms) of the yield distributions in Figure 4.1(b). Since the
gaps between means are small, the identification problem is hard. Moreover, Kinf computations
for non-parametric distributions are costlier than Bernoulli ones, so we only present the results
for 100 runs.

In Figure 4.1, EB-TCI, TS-TC, andTS-TCI slightly outperformKinf -DKMand the fixed (oracle)
sampling rule. Moreover, Kinf -LUCB performs significantly worse than uniform sampling. Due
to the small number of runs, we don’t observe large outliers for β-EB-TC. KL-LUCB performs
ten times worse than Kinf -LUCB, hence we omit it from Figure 4.1.

Bernoulli instances Next we assess the performance on 1000 random Bernoulli instances
with K = 10 such that µ1 = 0.6 and µi ∼ U([0.2, 0.5]) for all i ̸= 1 , where we enforce that
∆min ≥ 0.01 . We also study the instance µ = (0.5, 0.45, 0.45) , in which ∆min = 0 , and perform
1000 runs.

In Figure 4.2(a), we see that EB-TCI, TS-TC, and TS-TCI outperform other algorithms. While
this gain is slim compared to Kinf -DKM, the empirical stopping time is twice (resp. three times)
as large for KL-LUCB (resp. uniform sampling). Even when ∆min = 0 , Figure 4.2(b) hints that
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Figure 4.2 – Empirical stopping time on Bernoulli (a) random instances withK = 10 and (b) instance
µ = (0.5, 0.45, 0.45) .

their empirical performance might be preserved. Figure 4.2 confirms the lack of robustness of
EB-TC, which is prone to large outliers. For the symmetric instance in Figure 4.2(b), uniform
sampling outperforms KL-LUCB and performs on par with the “fixed” sampling.

4.5 Discussion

In Chapter 4, we instantiated several Top Two algorithms introduced in Chapter 2 for the
class of bounded distributions and proved their asymptotic β-optimality. In experiments on
distributions coming from a real-world application, several Top Two variants (in particular
TS-TC-β and EB-TCI-β ) proved to be more effective than all baselines. Furthermore, EB-TCI-β
is computationally not costlier than computing the stopping rule.

This chapter goes beyond the class of parametric distributions used in Chapters 2 and 3,
yet it is considered a specific non-parametric class of distributions. An interesting direction of
research lies in extending the analysis of Top Two algorithms to other classes of non-parametric
distributions by extracting sufficient (and minimal) conditions on the class D . As discussed
in this chapter, those conditions should yield enough regularity on the Kinf functions and the
characteristic times.

Finally, the Top Two algorithms are promising algorithms to tackle the setting of fixed-
budget identification, in which the algorithms have to stop at a given time and should then
make as few mistakes as possible. As their sampling rule is anytime (i.e. independent of δ ),
Top Two algorithms might also have theoretical guarantees for BAI in the fixed-budget setting,
or even the anytime one, in which guarantees on the error probability should be given at all
times. In Chapter 5, we will prove such guarantees in vanilla ε-BAI for Gaussian distributions
with known variances.
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Relaxed Identification in the Anytime
Setting
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Chapter 5

Epsilon Best Arm Identification

In Chapter 5, we study the ε-BAI problem for vanilla bandits in the anytime setting, as
described in Chapter 1. The presented results were published in Jourdan et al. [2023b].

We propose EB-TCε, a novel sampling rule for ε-best arm identification in stochastic bandits.
It is the first instance of the Top Two algorithm analyzed for approximate best arm identification.
EB-TCε is an anytime sampling rule that can therefore be employed without modification for
fixed confidence or fixed budget identification (without prior knowledge of the budget). We
provide three types of theoretical guarantees for EB-TCε. First, we prove bounds on its expected
sample complexity in the fixed confidence setting, notably showing its asymptotic optimality
in combination with an adaptive tuning of its exploration parameter. We complement these
findings with upper bounds on its probability of error at any time and for any error parameter,
which further yields upper bounds on its expected simple regret at any time. Finally, we
show through numerical simulations that EB-TCε performs favorably compared to existing
algorithms in different settings.
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5.1 Introduction

As detailed in Section 1.5, the motivation for the anytime setting comes from practical consid-
erations. Practitioners might have different predefined constraints, e.g. the maximal budget
might be fixed in advance, or the error made should be smaller than a fixed admissible error.
However, in many cases, fixing such constraints in advance can be challenging since a “good”
choice typically depends on unknown quantities. Moreover, while the budget is limited in
clinical trials, it is often not fixed beforehand. The physicians can decide to stop earlier or obtain
additional funding for their experiments. In light of those real-world constraints, regardless
of its primal objective, any strategy for choosing the next treatment should ideally come with
guarantees on its current candidate answer that hold at any time.

As described in Chapter 1, the motivation of the ε-BAI problem stems from the sampling
cost of the BAI problem. If several arms have means very close to the maximum, finding the
one with the highest mean might be difficult. In practice, we are often satisfied by any good
enough arm, in the sense that its mean is greater than µ⋆ − ε , where µ⋆ = maxi∈[K] µi and
ε ≥ 0 . This is the ε-BAI task, in which S = RK when ε > 0 . Let Iε(µ) = {i ∈ [K] | µi ≥ µ⋆ − ε}
be the set of ε-good (or ε-close) arms, which are the multiple correct answers. Our results can
also be adapted to multiplicative ε-BAI for ε ∈ [0, 1) , in which all means are non-negative,
i.e. S = {µ ∈ RK | mini∈[K] µi ≥ 0} , and we want to find an arm with mean µi ≥ (1 − ε)µ⋆ .

We consider the set Dσ of σ-sub-Gaussian distributions and assume that σi = 1 for all
i ∈ [K] by scaling, hence DK = DK

1 . Let ν ∈ DK with mean vector µ ∈ RK . Let i⋆(µ) :=
arg maxi∈[K] µi be the set of arms with largest mean (i.e. i⋆(µ) = I0(µ) ). Let ∆i := µ⋆ − µi

denote the sub-optimality gap of arm i .

Performance criteria An anytime algorithm is defined of by a sampling rule and a recom-
mendation rule. At time n , we denote by ı̂n the candidate answer and by In the arm to pull.
Let Pν (̂ın /∈ Iε(µ)) be the probability of ε-error of the recommendation at n , Eν [µ⋆ − µı̂n ] be its
the expected simple regretwhich is independent of any parameter ε . As detailed in Section 1.5.2,
there are several ways to evaluate the performance of an anytime algorithm for ε-BAI.

• Fixed confidence: given a known parameter δ ∈ (0, 1) , we augment the algorithm with a
stopping rule (hence a stopping time τε,δ ) which ensures that the algorithm is (ε, δ)-PAC,
i.e. Pν(τε,δ < +∞, ı̂τε,δ

/∈ Iε(µ)) ≤ δ for all ν ∈ DK with mean µ ∈ S . The goal is to
minimize the expected sample complexity E[τε,δ] , defined as the expected number of
samples it needs to collect before it can stop and return a good arm with confidence 1 − δ.

• Fixed budget: given a known budget T ∈ N , the algorithm is ran until a predefined time
T , and we evaluate it based on the probability of error at T . This setting has been mostly
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studied for ε = 0 [Audibert et al., 2010, Karnin et al., 2013], but Zhao et al. [2023] present
the first bounds for ε > 0 for an algorithm that is agnostic to this value.

• Simple regret minimization: we evaluate the expected simple regret at a known budget
T ∈ N [Bubeck et al., 2011, Zhao et al., 2023].

The anytime algorithm that we propose in this chapter is motivated by the fixed-confidence
ε-BAI problem. We shall analyze its expected sample complexity in the fixed confidence setting,
and thanks to the anytime property, we will also be able to prove guarantees on its probability
of ε-error for every ε ≥ 0 and its expected simple regret at any time.

Fixed-confidence ε-BAI Let ε ≥ 0 and δ ∈ (0, 1) be fixed error and confidence parameters. The
(ε, δ)-PAC requirement leads to an asymptotic lower bound on the expected sample complexity.

Lemma 5.1 (Theorem1 inDegenne andKoolen [2019]). Let δ ∈ (0, 1) and ε ≥ 0 . For all (ε, δ)-
PAC algorithms and all instances ν = N (µ, 1K) with µ ∈ RK , lim infδ→0 Eν [τε,δ]/ log(1/δ) ≥
Tε(ν) where Tε(ν) = mini∈Iε(µ) minβ∈(0,1) Tε,β(ν, i) with

Tε,β(ν, i)−1 = max
w∈ΣK ,wi=β

min
j ̸=i

1
2

(µi − µj + ε)2

1/β + 1/wj
. (5.1)

An algorithm is asymptotically optimal (resp. β-optimal) if its sample complexity matches
that lower bound, that is if lim supδ→0 Eν [τε,δ]/ log(1/δ) ≤ Tε(ν) for all ν ∈ DK with mean
µ ∈ RK (resp. Tε,β(ν) = mini∈Iε(µ) Tε,β(ν, i) ). As in BAI, we can show that Tε,1/2(ν) ≤ 2Tε(ν)
[Russo, 2016]. The asymptotic characteristic time Tε(ν) is of order ∑K

i=1 min{ε−2,∆−2
i } . It

is computed as a minimum overall ε-good arms i ∈ Iε(µ) of an arm-specific characteristic
time, which can be interpreted as the time required to verify that i is a correct answer (i.e. ε-
good). Each of the times minβ∈(0,1) Tε,β(ν, i) correspond to the complexity of a BAI instance
(i.e. ε-BAI with ε = 0 ) in which the mean of arm i is increased by ε . Let wε,β(ν, i) be the
maximizer of (5.1). In Garivier and Kaufmann [2021], they show that Tε(ν) = Tε,β⋆(i⋆)(ν, i⋆)
and Tε,β(ν) = Tε,β(ν, i⋆) , where i⋆ ∈ i⋆(µ) and β⋆(i⋆) = arg minβ∈(0,1) Tε,β(ν, i⋆) . Note that the
characteristic time for σ-sub-Gaussian distributions (which does not have a form as “explicit”
as (5.1)) is always smaller than the ones for Gaussian having the same means and variance σ2 .
Lemma E.1 in Appendix E.1 gives a reduction of a ε-BAI problem to a BAI one on a modified
instance.

Any time and uniform ε-error bound In addition to the fixed-confidence guarantees, we will
prove a bound on the probability of error for any deterministic time n and any error ε , similarly
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to the results of Zhao et al. [2023]. That is, we bound Pν (̂ın /∈ Iε(µ)) for any deterministic n and
any ε . This gives a bound on the probability of error in ε-BAI, and a bound on the expected
simple regret of the sampling rule by integrating: Eν [µ⋆ − µı̂n ] =

∫
R+

Pν (̂ın /∈ Iε(µ))d ε .

Contribution 5.1. In Chapter 5, we propose the EB-TCε0 algorithm, with a slack parameter ε0 > 0
, originally motivated by ε0-BAI. It is the first Top Two algorithm for the ε-BAI problem when ε > 0
. We study its combination with a stopping rule for fixed confidence ε-BAI (possibly with ε0 ̸= ε )
and also its probability of error and expected simple regret at any time.

• EB-TCε0 performs well empirically compared to existing methods, both for the expected sample
complexity criterion in fixed confidence ε-BAI and for the anytime simple regret criterion. It
is easy to implement and computationally inexpensive in our regime.

• We prove upper bounds on the expected sample complexity of EB-TCε0 in fixed confidence
ε-BAI with 1-sub-Gaussian distributions, both asymptotically (Theorem 5.4) as δ → 0 and
for any δ (Theorem 5.5). In particular, EB-TCε with ε > 0 is asymptotically optimal for
ε-BAI with Gaussian distributions.

• We prove a uniform ε-error bound valid for any time for EB-TCε0 . In particular, this gives a
fixed budget error bound and a control of the expected simple regret of the algorithm at any
deterministic time n (Theorem 5.9 and Corollary 5.10).

5.2 Anytime Top Two Sampling Rule

We propose an anytime Top Two algorithm, named EB-TCε0 and summarized in Figure 5.1.
This is an instance of the Top Two algorithm, see Chapter 2.2 for more details on those methods.

We start by sampling each arm once. Let Nn,i and µn,i be the empirical count and empirical
mean of arm i ∈ [K] before time n . At time n > K , we recommend the Empirical Best (EB)
arm ı̂n ∈ i⋆(µn) (where ties are broken arbitrarily). At the time n > K , a Top Two sampling
rule defines a leaderBn ∈ [K] and a challengerCn ̸= Bn . It then chooses the arm to pull among
them. For the leader/challenger pair, we consider the Empirical Best (EB) leader BEB

n = ı̂n and,
given a slack ε0 > 0 , the Transportation Cost (TCε0 ) challenger

CTCε0
n ∈ arg min

i ̸=BEB
n

µn,BEB
n

− µn,i + ε0√
1/Nn,BEB

n
+ 1/Nn,i

. (5.2)

The TCε0 challenger seeks to minimize an empirical version of a quantity that appears in the
lower bound for ε0-BAI (Lemma 5.1), hence it is a natural extension of the TC challenger used
in the T3C algorithm [Shang et al., 2020] for ε0 = 0 .
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5.2 Anytime Top Two Sampling Rule

1 Input: Slack ε0 > 0 , proportion β ∈ (0, 1) (only for fixed proportions).
2 Output: Next arm to sample In and next recommendation ı̂n .
3 Set ı̂n ∈ arg maxi∈[K] µn,i ; // Candidate answer

4 Set Bn = ı̂n and Cn ∈ arg mini ̸=Bn

µn,Bn −µn,i+ε0√
1/Nn,Bn +1/Nn,i

; // Leader and challenger

5 Set [fixed] βn(Bn, Cn) = β or [IDS] βn(Bn, Cn) = Nn,Cn/(Nn,Bn +Nn,Cn) , then
update β̄n+1(Bn, Cn) and Tn+1(Bn, Cn) ; // Target allocation

6 Set In =
{
Cn if NBn

n,Cn
≤ (1 − β̄n+1(Bn, Cn))Tn+1(Bn, Cn)

Bn otherwise ; // Tracking

Algorithm 5.1: EB-TCε0 algorithm with fixed or IDS proportions.

We select In ∈ {Bn, Cn} thanks to the tracking procedure associatedwith the leader/challenger
pair (Bn, Cn) , hence we haveK(K − 1) independent tracking procedures. The tracking pro-
cedure ensures that the proportion of times the algorithm pulled the leader i remains close
to a target average proportion β̄n(i, j) ∈ (0, 1) . We define two variants of the algorithm
that differ in the way they set the proportions β̄n(i, j) . Fixed proportions set β̄n(i, j) = β

for all (n, i, j) ∈ N × [K]2 , where β ∈ (0, 1) is fixed beforehand. Information-Directed
Selection (IDS) [You et al., 2023] defines βn(i, j) = Nn,j/(Nn,i + Nn,j) and sets β̄n(i, j) :=
Tn(i, j)−1∑

t∈[n−1] 1 ((Bt, Ct) = (i, j))βt(i, j) where Tn(i, j) :=
∑

t∈[n−1] 1 ((Bt, Ct) = (i, j)) is
the selection count of arms (i, j) as leader/challenger. Importantly, the IDS proportions are
independent of the slack ε for Gaussian with known variance. Empirically, we observe slightly
better performances when using IDS.

Let N i
n,j :=

∑
t∈[n−1] 1 ((Bt, Ct) = (i, j), It = j) be the number of pulls of arm j at rounds

in which i was the leader. We set In = Cn if NBn
n,Cn

≤ (1 − β̄n+1(Bn, Cn))Tn+1(Bn, Cn) and
In = Bn otherwise. Using Theorem 6 in Degenne et al. [2020b] for each tracking procedure
(i.e. each pair (i, j) ) yields Lemma 5.2.

Lemma 5.2. For all n > K , i ∈ [K] , j ̸= i , we have −1/2 ≤ N i
n,j − (1 − β̄n(i, j))Tn(i, j) ≤ 1 .

Choosing ε0 Jourdan et al. [2022] shows that EB-TC (i.e. EB-TCε0 with slack ε0 = 0 ) suffers
from poor empirical performance for moderate δ in BAI (see Appendix D.3 in Jourdan et al.
[2022] for a detailed discussion). Therefore, the choice of the slack ε0 > 0 is critical since it
acts as a regularizer which naturally induces sufficient exploration. By setting ε0 too small, the
EB-TCε0 algorithm will become as greedy as EB-TC and perform poorly. Having ε0 too large
will flatten differences between sub-optimal arms, hence it will behave more uniformly. We
observe from the theoretical guarantees and our experiments that it is best to take ε0 = ε for
ε-BAI, but the empirical performance is only degrading slowly for ε0 > ε . Taking ε0 < ε leads
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to poor performance. When tackling BAI, the limitation of EB-TC0 can be solved by adding an
implicit exploration mechanism in the choice of the leader/challenger pair.

Anytime sampling rule EB-TCε0 is independent of a budget of samples T or a confidence
parameter δ . This anytime sampling rule can be regarded as a streamof empiricalmeans/counts
(µn, Nn)n>K (which could trigger stopping) and a stream of recommendations ı̂n = i⋆(µn) .
These streams can be used by agents with different kinds of objectives. The fixed-confidence
setting couples it with a stopping rule to be (ε, δ)-PAC. It can also be used to get an ε-good
recommendation with a large probability at any given time n .

5.2.1 Stopping Rule for Fixed-confidence ε-Best-arm Identification

In addition to the sampling and recommendation rules, the fixed-confidence setting requires a
stopping rule. Given an error/confidence pair, the GLRε stopping rule [Garivier and Kaufmann,
2016] prescribes to stop at the time

τε,δ = inf

n > K | min
i ̸=ı̂n

µn,̂ın − µn,i + ε√
1/Nn,̂ın + 1/Nn,i

>
√

2c(n− 1, δ)

 with ı̂n ∈ i⋆(µn) , (5.3)

where c : N × (0, 1) → R+ is a threshold function. Lemma 5.3 gives a threshold ensuring that
the GLRε stopping rule is (ε, δ)-PAC for all ε ≥ 0 and δ ∈ (0, 1) , regardless of the sampling
rule.

Lemma 5.3 ([Kaufmann and Koolen, 2021]). Let ε ≥ 0 and δ ∈ (0, 1) . Given any sampling
rule, using the threshold

c(n, δ) = 2CG(log((K − 1)/δ)/2) + 4 log(4 + log(n/2)) (5.4)

with the stopping rule (5.3) with error/confidence pair (ε, δ) yields a (ε, δ)-PAC algorithm for
1-sub-Gaussian distributions with mean in RK . The function CG is defined in (B.1). It satisfies
CG(x) ≈ x+ log(x) .

5.3 Fixed-confidence Guarantees

To study ε-BAI in the fixed-confidence setting, we couple EB-TCε0 with the GLRε stopping
rule (5.3) using error ε ≥ 0 , confidence δ ∈ (0, 1) and threshold (5.4), hence this algorithm
is (ε, δ)-PAC. We derive upper bounds on the expected sample complexity Eν [τε,δ] both in the
asymptotic regime of δ → 0 (Theorem 5.4) and for finite confidence when ε = ε0 (Theorem 5.5).
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Theorem 5.4. Let ε ≥ 0 , ε0 > 0 and (β, δ) ∈ (0, 1)2 . Combined with GLRε stopping (5.3),
the EB-TCε0 algorithm is (ε, δ)-PAC and it satisfies that, for all ν ∈ DK with mean µ such that
|i⋆(µ)| = 1 ,

lim sup
δ→0

Eν [τε,δ]
log(1/δ) ≤ Dε,ε0(µ)

 Tε0(ν) [IDS]

Tε0,β(ν) [fixed β]
,

where Dε,ε0(µ) = (1 + maxi ̸=i⋆(ε0 − ε)/(µ⋆ − µi + ε))2 .

Proof. The proof follows along the same lines as the one in Section 2.3 of Chapter 2, which
was written in sufficient generality to also cope for ε-BAI. We have shown that the EB leader
satisfies the Properties 2.14 and 2.17 in Appendix B.12. As for the TC challenger studied in
Appendix B.13, the TCε0 challenger satisfies the Properties 2.15 and 2.20. Interestingly, the
proof also holds when ε ̸= ε0 at an extra cost of Dε,ε0(µ) since we approximate empirically (
β-)optimal allocation for ε0-BAI while stopping for ε-BAI. We refer the reader to Appendix D
in Jourdan et al. [2023b] for more details. We also note that Theorem 5.4 is not conflicting with
the lower bound of Lemma 5.1, as shown by Lemma E.2 in Appendix E.1. ■

While Theorem 5.4 holds for all 1-sub-Gaussian distributions, it is particularly interesting for
Gaussian ones, in light of Lemma 5.1. When choosing ε = ε0 (i.e.Dε0,ε0(µ) = 1 ), Theorem 5.4
shows that EB-TCε0 is asymptotically optimal for Gaussian bandits when using IDS proportions
and asymptotically β-optimal when using fixed proportions β . By direct computation, one
can show that Theorem 5.4 is not conflicting with the lower bound of Lemma 5.1. Empirically,
we observe that the empirical stopping time can be drastically worse when taking ε0 < ε , and
close to the optimal one when ε0 > ε .

Until recently [You et al., 2023], proving asymptotic optimality of Top Two algorithms with
adaptive choice β was an open problem in BAI. In this chapter, we prove that their choice of
IDS proportions also yields asymptotically optimal algorithms for ε-BAI. While the proof of
Theorem 5.4 assumes the existence of a unique best arm, it holds for instances having sub-
optimal arms with the same mean. This is an improvement compared to existing asymptotic
guarantees on Top Two algorithms that rely on the assumption that the means of all arms are
different [Qin et al., 2017, Shang et al., 2020, Jourdan et al., 2022]. The improvement is possible
thanks to the regularization induced by the slack ε0 > 0 .

While asymptotic optimality in the ε-BAI setting was already achieved for various algo-
rithms (e.g. ε-Track-and-Stop (TaS) [Garivier and Kaufmann, 2021], Sticky TaS [Degenne and
Koolen, 2019] or LεBAI [Jourdan and Degenne, 2022]), none of them obtained non-asymptotic
guarantees. Despite their theoretical interest, asymptotic results provide no guarantee of the
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performance for moderate δ . Furthermore, asymptotic results on Top Two algorithms require
a unique best arm regardless of the considered error ε: reaching asymptotic ( β-)optimality
means that the algorithm eventually allocates samples in an optimal way that depends on the
identity of the unique best arm, and that requires the unique best arm to be identified. As our
focus is ε-BAI, our guarantees should only require that one of the ε-good arms is identified
and should hold for instances having multiple best arms. The upper bound should scale with
ε−2

0 instead of ∆−2
min when ∆min is small. Theorem 5.5 satisfies these requirements.

Theorem 5.5. Let δ ∈ (0, 1) and ε0 > 0 . Combined with GLRε0 stopping (5.3), the EB-TCε0-1/2
algorithm is (ε0, δ)-PAC and satisfies that, for all ν ∈ DK with mean µ ∈ RK ,

Eν [τε0,δ] ≤ inf
ε̃∈[0,ε0]

max {Tµ,ε0(δ, ε̃) + 1, Sµ,ε0(ε̃)} + 2K2 ,

where Tµ,ε0(δ, ε̃) and Sµ,ε0(ε̃) are defined by

Tµ,ε0(δ, ε̃) = sup{n | n− 1 ≤ 2(1 + γ)2 ∑
i∈Iε̃(µ)

Tε0,1/2(ν, i)(
√
c(n− 1, δ) +

√
4 logn)2} ,

Sµ,ε0(ε̃) = h1

(
16(1 + γ−1)
aµ,ε0(ε̃) Hµ,ε0(ε̃), (1 + γ−1)K2

aµ,ε0(ε̃) + 1
)
,

aµ,ε0(ε̃) =
mini∈Iε̃(µ) Tε0,1/2(ν, i)∑

i∈Iε̃(µ) Tε0,1/2(ν, i) min
i∈Iε̃(µ),j ̸=i

wε0,1/2(ν, i)j ,

where γ ∈ (0, 1/2] is an analysis parameter and h1(y, z) ≈ z + y log(z + y log(y)) . Tε0,1/2(µ, i)
and wε0,1/2(ν, i) are defined in (5.1) and

Hµ,ε0(ε̃) := 2|i⋆(µ)|
∆µ(ε̃)2 + (|Iε̃(µ) \ i⋆(µ)|)Cµ,ε0(ε̃)2 +

∑
i/∈Iε̃(µ)

max{Cµ,ε0(ε̃),
√

2∆−1
i }2 , (5.5)

with ∆µ(ε̃) = mink /∈Iε̃(µ) ∆k and Cµ,ε0(ε̃) = max{2∆µ(ε̃)−1 − ε−1
0 , ε−1

0 } .

Proof. The proof follows along the same lines as the one in Section 2.4 of Chapter 2, which was
written in sufficient generality to cope for ε-BAI. While we detail some key lemmas below, we
refer the reader to Appendix E in Jourdan et al. [2023b] for more details. ■

The upper bound on Eν [τε0,δ] involves a δ-dependent term Tµ,ε0(δ, ε̃) and a δ-independent
term Sµ,ε0(ε̃) . The choice of ε̃ influences the compromise between those, and the infimum over
ε̃means that our algorithm benefits from the best possible trade-off. In the asymptotic regime,
we take ε̃ = 0 and γ → 0 and we obtain limδ→0 Eν [τε0,δ]/ log(1/δ) ≤ 2|i⋆(µ)|Tε0,1/2(ν) . When
|i⋆(µ)| = 1 , we recover the asymptotic result of Theorem 5.4 up to a multiplicative factor 2 .
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For multiple best arms, the asymptotic sample complexity is at most a factor 2|i⋆(µ)| from the
β-optimal one.

Given a finite confidence, the dominant term will be Sµ,ε0(ε̃) . For ε̃ = 0 , we show that
Hµ,ε0(0) = O(K min{∆min, ε0}−2) , hence we should consider ε̃ > 0 to avoid the dependency
in ∆min . For ε̃ = ε0 , there exists instances such that maxi∈Iε0 (µ) Tε0,1/2(ν, i) is arbitrarily large,
hence Tµ,ε0(δ, ε0) will be very large as well. The best trade-off is attained in the interior of
the interval (0, ε0) . Proven in Appendix E.2, Lemma 5.6 yields that, for ε̃ = ε0/2 , we have
Tε0,1/2(ν, i) = O(K/ε2

0) for all i ∈ Iε0/2(µ) and Hµ,ε0(ε0/2) = O(K/ε2
0) . Therefore, we obtain

an upper bound O(|Iε0/2(µ)|Kε−2
0 log ε−1

0 ) .

Lemma 5.6. Let ε > 0 and µ ∈ RK . Then, for all i ∈ Iε/2(µ) , we have Tε,1/2(ν, i) ≤ 32K/ε2

and minj ̸=iwε,1/2(ν, i)j ≥ (16(K − 2) + 2)−1 .

While the dependency in aµ,ε0(ε0/2) is milder in ε-BAI than in BAI (as it is bounded away
from 0 ), we can improve it by using a refined analysis. Introduced in Jourdan and Degenne
[2023], this method allows to clip minj ̸=iwε0,1/2(ν, i)j by a fixed value x ∈ [0, (K − 1)−1] for all
i ∈ Iε̃(µ) .

Comparison with existing upper bounds The LUCB algorithm [Kalyanakrishnan et al.,
2012] has a structure similar to a Top Two algorithm, with the differences that LUCB samples
both the leader and the challenger and that it stops when the gap between the UCB and LCB
indices is smaller than ε0 . As LUCB satisfies Eν [τε0,δ] ≤ 292Hε0(µ) log(Hε0(µ)/δ) + 16 where
Hε0(µ) =

∑
i(max{∆i, ε0/2})−2 , it enjoys better scaling than EB-TCε0-1/2 for finite confidence.

However, since the empirical allocation of LUCB is not converging towards wε0,1/2(µ) , it is not
asymptotically 1/2-optimal. While LUCB has better moderate confidence guarantees, there is
no hope to prove any time performance bounds since LUCB indices depend on δ . In contrast,
EB-TCε0-1/2 enjoys such guarantees (see Section 5.4).

Key technical tool for the non-asymptotic analysis We want to ensure that EB-TCε0-1/2
eventually selects only ε-good arms as leader, for any error ε ≥ 0 . Our proof strategy is to
show that if the leader is not an ε-good arm and empirical means do not deviate too much from
the true means, then either the current leader or the current challenger was selected as leader
or challenger less than a given quantity.

To conclude the proof, we rely on the key observation that the number of times one can
increment a bounded positive variable by one is also bounded (Lemma 5.7). As a result, we obtain a
bound on the total number of times the leader is not an ε-good arm. The proof of Lemma 5.7 is
detailed in Appendix E.3.
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Lemma 5.7. Let δ ∈ (0, 1] and n > K . Let Tn(i) :=
∑

j ̸=i(Tn(i, j) + Tn(j, i)) be the number
of times arm i was selected in the leader/challenger pair. Assume there exists a sequence of events
(At(n, δ))K<t≤n and positive reals (Di(n, δ))i∈[K] such that, for all t ∈ {K + 1, . . . , n} , under
the event At(n, δ) ,

∃it ∈ [K], Tt(it) ≤ Dit(n, δ) and Tt+1(it) = Tt(it) + 1 . (5.6)

Then, we have
∑n

t=K+1 1 (At(n, δ)) ≤
∑

i∈[K]Di(n, δ) .

To control the deviation of the empirical means and empirical gaps to their true value, we
use a sequence of concentration events (En,δ)n>T defined as En,δ = E1

n,δ ∩ E2
n,δ with

E1
n,δ :=

{
∀k ∈ [K],∀t ≤ n, |µt,k − µk| <

√
2f1(n, δ)
Nt,k

}
,

E2
n,δ :=

∀(i, k) ∈ [K]2 s.t. i ̸= k, ∀t ≤ n,
|(µt,i − µt,k) − (µi − µk)|√

1/Nt,i + 1/Nt,k

<
√

2f2(n, δ)

 ,

where f1(x, δ) = log(1/δ) + (1 + s) log x and f2(x, δ) = log(1/δ) + (2 + s) log(x) . It satisfies
that Pν(E∁

n,δ) ≤ K2δn−s where s ≥ 0 and δ ∈ (0, 1] .
For the EB-TCε0-1/2 algorithmwith fixed β = 1/2 , we prove that, under En,δ , {BEB

t /∈ Iε(µ)}
is a “bad” event satisfying the assumption of Lemma 5.7 with

∑
i∈[K]

Di(n, δ) = 8Hµ,ε0(ε)f2(n, δ) + 3K(K − 1)/2 .

To prove this result (Lemma E.4 in Appendix E.4), we distinguish between two cases. When
C

TCε0
t ∈ i⋆(µ), we compare the empirical means of the leader and the challenger. When

C
TCε0
t /∈ i⋆(µ), we compare the empirical transportation cost of (BEB

t , C
TCε0
t ) to the one of

(BEB
t , i) with i ∈ i⋆(µ) .
Since∑i∈Iε(µ)

∑
j Tn(i, j) = n−1−

∑n
t=K+1 1

(
BEB

t /∈ Iε(µ)
) , this yields Lemma 5.8, which

essentially says that the leader is an ε-good arm except for a logarithmic number of rounds.
The proof of Lemma 5.8 is detailed in Appendix E.4.

Lemma 5.8. Let δ ∈ (0, 1] , n > K and ε ≥ 0 . Under the event En,δ , we have∑
i∈Iε(µ)

∑
j

Tn(i, j) ≥ n− 1 − 8Hµ,ε0(ε)f2(n, δ) − 3K2 ,
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where f2(n, δ) = log(1/δ) + (2 + s) logn and Hµ,ε0(ε) is defined in (5.5).

Noticeably, Lemma 5.8 holds for any ε ≥ 0 even when there are multiple best arms. As
expected, the number of times the leader is not among the ε0-good arms depends onHµ,ε0(ε0) =
O(K/ε2

0) . The number of times the leader is not among the best arms depends on Hµ,ε0(0) =
O(K(min{∆min, ε0})−2) .

Time-varying slack Theorem 5.4 shows the asymptotic optimality of the EB-TCε0-IDS algo-
rithm for ε0-BAI (where ε0 > 0 ). To obtain optimality for BAI, we consider time-varying slacks
(εn)n , where (εn)n is decreasing, εn > 0 and εn →+∞ 0 . Thanks to a direct adaptation of our
asymptotic analysis on Eν [τ0,δ] , regardless of the choice of (εn)n , one can show that using GLR0

stopping, the EB-TC(εn)n
-IDS algorithm with IDS is (0, δ)-PAC and is asymptotically optimal in

BAI. Its empirical performance is sensitive to the choice of (εn)n .

5.4 Anytime Guarantees on the Probability of Error

Could an algorithm analyzed in the fixed-confidence setting be used for the fixed-budget or
even anytime setting? This question is natural for EB-TCε0 , which does not depend on the confi-
dence parameter δ . Yet its answer is not obvious since algorithms that have optimal asymptotic
guarantees in the fixed-confidence setting can be sub-optimal in terms of error probability.
Indeed Komiyama et al. [2022] prove in their Appendix C that for any asymptotically optimal
(exact) BAI algorithm, there exist instances in which the error probability cannot decay ex-
ponentially with the horizon, which makes them worse than the (minimax optimal) uniform
sampling strategy [Bubeck et al., 2011].

Their argument also applies to β-optimal algorithms, hence to EB-TC0 with β = 1/2 . Since
their argument relies on the sparsity of the optimal allocation when considering the limit of
∆min → 0 , it will not apply to ε-BAI as the optimal allocation is not asymptotically sparse
(Lemma 5.6). However, whenever ε0 is positive, Theorem 5.9 reveals an upper bound on the
error probability of EB-TCε0-1/2 which always decays exponentially, hence redeems the use of
optimal fixed-confidence algorithms for a relaxed BAI problem in the anytime setting. This
result provides an anytime bound on the probability to recommend an arm that is not ε-optimal,
for any error ε ≥ 0 . This bound involves instance-dependent complexities depending solely on
the gaps in µ . To state it, we define Cµ := |{µi | i ∈ [K]}| as the number of distinct arm means
in µ and let Cµ(i) := {k ∈ [K] | µ⋆ − µk = ∆i} be the set of arms having mean gap ∆i where
the gaps are sorted by increasing order 0 = ∆1 < ∆2 < · · · < ∆Cµ . For all ε ≥ 0 , let iµ(ε) = i

if ε ∈ [∆i,∆i+1) (with the convention ∆Cµ+1 = +∞ ). Theorem 5.9 shows that the exponential
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decrease of Pν (̂ın /∈ Iε(µ)) is linear. The proof of Theorem 5.9 is detailed in Section 5.4.1 (see
also Appendix F in Jourdan et al. [2023b]).

Theorem 5.9. Let ε0 > 0 . The EB-TCε0-1/2 algorithm satisfies that, for all ν ∈ DK with mean
µ ∈ RK , for all ε ≥ 0 , for all n > 5K2/2 ,

Pν (̂ın /∈ Iε(µ)) ≤ K2e2(2 + logn)2 exp
(

−p
(

n− 5K2/2
8Hiµ(ε)(µ, ε0)

))
.

where p(x) = x − log x and (Hi(µ, ε0))i∈[Cµ−1] are such that H1(µ, ε0) = K(2∆−1
min + 3ε−1

0 )2

andK/∆−2
i+1 ≤ Hi(µ, ε0) ≤ K minj∈[i] max{2∆−1

j+1, 2 ∆j/ε0+1
∆i+1−∆j

+ 3ε−1
0 }2 for all i > 1 .

This bound can be compared with the following uniform ε-error bound of the strategy
using uniform sampling and recommending the empirical best arm:

Pν

(
ı̂Un /∈ Iε(µ)

)
≤

∑
i/∈Iε(µ)

exp
(

−∆2
i ⌊n/K⌋

4

)
≤ K exp

− n−K

4K∆−2
iµ(ε)+1

 .

Recalling that the quantityHi(µ, ε0) in Theorem 5.9 is always bounded from below by 2K∆−1
i+1

, we get that our upper bound is larger than the probability of error of the uniform strategy,
but the two should be quite close. For example for ε = 0 , we have

Pν (̂ın /∈ i⋆(µ))≤ exp
(

−Θ
(

n

K(∆−1
min + ε−1

0 )2

))
, Pν

(
ı̂Un /∈ i⋆(µ)

)
≤ exp

(
−Θ

(
n

K∆−2
min

))
.

Even if they provide a nice sanity check for the use of a sampling rule with optimal fixed-
confidence guarantees for ε0-BAI in the anytime regime, we acknowledge that these guarantees
are far from optimal. Indeed, the work of Zhao et al. [2023] provides tighter anytime uniform
ε-error probability bounds for two algorithms: an anytime version of Sequential Halving
[Karnin et al., 2013] using a doubling trick (called DSH) and an algorithm called Bracketting
Sequential Halving, that is designed to tackle a very large number of arms. Their upper bounds
are of the form Pν (̂ın /∈ Iε(µ)) ≤ exp (−Θ (n/H(ε))) with H(ε) = 1

g(ε/2) maxi≥g(ε)+1
i

∆2
i
where

g(ε) = |{i ∈ [K] | µi ≥ µ⋆ − ε}| . Therefore, they can be much smaller thanK∆−2
iµ(ε)+1 .

The BUCB algorithmofKatz-Samuels and Jamieson [2020] is analyzed for any level of error ε
, but in a different fashion. The authors provide bounds on its (ε, δ)-unverifiable sample complexity,
defined as the expectation of the smallest stopping time τ̃ satisfyingP(∀t ≥ τ̃ , ı̂n ∈ Iε(µ)) ≥ 1−δ
. This notion is different from the sample complexity we use in this chapter, which is sometimes
called verifiable since it is the time at which the algorithm can guarantee that its error probability
is less than δ . Interestingly, to prove Theorem 5.9 we first prove a bound on the unverifiable
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sample complexity of EB-TCε0-1/2 which is valid for all (ε, δ) , neither of which are parameters
of the algorithm. More precisely, we prove that Pν

(
∀n > Uiµ(ε),δ(µ, ε0), ı̂n ∈ Iε(µ)

)
≥ 1 − δ

for Ui,δ(µ, ε0) =δ→0 8Hi(µ, ε0) log(1/δ) + O(log log(1/δ)) . As this statement is valid for all
δ ∈ (0, 1) , applying it for each n to δn such that Uiµ(ε),δn

(µ, ε0) = n , we obtain Theorem 5.9.
We remark that such a trick cannot be applied to BUCB to get uniform ε-error bounds for any
time, as the algorithm does depend on δ .

Expected simple regret As noted by Zhao et al. [2023], uniform ε-error bounds easily yield
expected simple regret bounds. We state in Corollary 5.10 the one obtained for EB-TCε0

. As a motivation to derive expected simple regret bounds, we observe that they readily
translate to bounds on the expected cumulative regret for an agent observing the stream of
recommendations (̂ın) and playing arm ı̂n . An exponentially decaying expected simple regret
leads to a constant expected cumulative regret in this decoupled exploration/exploitation
setting [Avner et al., 2012, Rouyer and Seldin, 2020].

Corollary 5.10. Let ε0 > 0 . Let p(x) and (Hi(µ, ε0))i∈[Cµ−1] be defined as in Theorem 5.9. The
EB-TCε0-1/2 algorithm satisfies that, for all ν ∈ DK with mean µ ∈ RK , for all n > 5K2/2 ,

Eν [µ⋆ − µı̂n ] ≤ K2e2(2 + logn)2 ∑
i∈[Cµ−1]

(∆i+1 − ∆i) exp
(

−p
(
n− 5K2/2
8Hi(µ, ε0)

))
.

Proof. Using Eν [µ⋆ − µı̂n ] =
∫
R+

Pν (̂ın /∈ Iε(µ))d ε , it is a direct corollary of Theorem 5.9. ■

Following the discussion above, this bound is not expected to be state-of-the-art, it rather
justifies that EB-TCε0 with ε0 > 0 is not toomuchworse than the uniform sampling strategy. Yet,
as we shall see in our experiments, the empirical story is different. In Section 5.5, we compare
the simple regret of EB-TCε0-1/2 to that of DSH in synthetic experiments with a moderate
number of arms, revealing the superior performance of EB-TCε0-1/2.

Lower bound The theoretical understanding of the fixed-budget setting with (asymptotic)
lower bounds on the probability of error is still an active area of research. We refer the reader
to Section 1.5.1 in Chapter 1 for a more detailed discussion. Up to a second order term, the
expected simple regret has the same asymptotic rate of convergence as the probability of error
since ∆minPν (̂ın ̸= i⋆) ≤ Eν [µ⋆ − µı̂n ] ≤ ∆maxPν (̂ın ̸= i⋆) .

A versatile algorithm In Section 2.2.6, we explained why the Top Two algorithms are simple,
interpretable, and generalizable. According to the requirements we set for ourselves in Sec-
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tion 1.1, versatility is the last characteristic of the Top Two algorithms that needs to be illustrated.
Based on the previous results, EB-TCε0-1/2 is a versatile algorithm that enjoys guarantees that
hold at any deterministic time. Moreover, EB-TCε0-1/2 can be used for different downstream
tasks, and we refer the reader to Section 1.5.2 for more details on this aspect.

5.4.1 Proof of Theorem 5.9

Let ∆max = maxi∈[K] µ⋆ − µi . Let (ε1, δ) be analysis parameters, i.e. not the error/confidence
pairs from the stopping rule (5.3). When ε1 ≥ ∆max , we have Iε1(µ)∁ = ∅ , hence Pν (̂ın /∈
Iε1(µ)) = 0 . In the following, we consider ε1 ∈ [0,∆max) .

We first define concentration events to control the deviations of the random variables used
in the EB leader and the TCε0 challenger. For all n > K and δ ∈ (0, 1) , let Ẽn,δ = Ẽ1

n,δ ∩ Ẽ2
n,δ

with

Ẽ1
n,δ =

{
∀i ∈ [K], ∀t ≤ n, |µt,i − µi| <

√
2f̃1(n, δ)/Nt,i

}
,

Ẽ2
n,δ =

∀(i, j) ∈ [K]2 s.t. i ̸= j, ∀t ≤ n,
|(µt,i − µt,j) − (µi − µj)|√

1/Nt,i + 1/Nt,j

<
√

2f̃2(n, δ)

 ,

where f̃1(n, δ) = 1
2W−1(2 log(1/δ) + 2 log(2 + logn) + 2) with W−1(x) = −W−1(−e−x) for

all x ≥ 1 , and f̃2(n, δ) = W−1 (log (1/δ) + 2 log (2 + logn) + 2) . We recall that W−1(x) ≈
x+ log(x) (see Appendix A), and one can show that f̃1(n, δ) ≤ f̃2(n, δ) . Using concentration
arguments, it is straightforward to show that Pν(Ẽ∁

n,δ) ≤ K2δ .
Using Lemma 5.11, the proof boils down to constructing an infinite number of times

{Tε1(δ, ε)}ε∈[0,ε1] such that Ẽn,δ ⊆ {ı̂n ∈ Iε1(µ)} for n > infε∈[0,ε1] Tε1(δ, ε) since it yields that

Pν (̂ın /∈ Iε1(µ)) ≤ K2 inf{δ | n > inf
ε∈[0,ε1]

Tε1(δ, ε)} .

Lemma 5.11. Let ε ≥ 0 and (En,δ)n>K,δ∈(0,1) such that Pν(E∁
n,δ) ≤ Cδ with C > 0 . Let Tε(δ) >

K such that En,δ ⊆ {ı̂n ∈ Iε(µ)} for n > Tε(δ) . Then, Pν (̂ın /∈ Iε(µ)) ≤ C inf{δ | n > Tε(δ)} .

Proof. Using Pν (̂ın /∈ Iε(µ)) ≤ Pν(E∁
n,δ) ≤ Cδ for all n > Tε(δ) and taking the infimum. ■

Let ε ∈ [0, ε1] . Since ı̂n = BEB
n , we will construct a time Tε1(δ, ε) such that Ẽn,δ ∩ {BEB

n /∈
Iε1(µ)} = ∅ for all n > Tε1(δ, ε) . Let us denote by Uε,ε1,t(n, δ) the set of undersampled arms
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which are not ε1-good, i.e.

Uε,ε1,t(n, δ) := Iε1(µ)∁ ∩
{
i | Nt,i ≤ 4Cε,if̃2(n, δ)

}
with Cε,i := 2

mink∈Iε(µ)(∆i − ∆k)2 .

Lemma 5.12 shows that for n large enough, a necessary condition for an error to occur is to
have an undersampled leader. The proof of Lemma 5.12 is detailed in Appendix E.5.

Lemma 5.12. Let ε1 > 0 and ε ∈ [0, ε1] . Let Hµ,ε0(ε) as in Lemma 5.8 and define

H̃ε,ε1(µ, ε0) := Hµ,ε0(ε) + 2|Iε(µ)|
min(i,j)∈Iε(µ)×Iε1 (µ)∁(∆j − ∆i)2 . (5.7)

Let us define Sε,ε1,ε0,µ(δ) = sup
{
n | n ≤ 4H̃ε,ε1 (µ,ε0)

min{β,1−β} f̃2(n, δ) + (3/2 + 1/β)K2
}
. For all n >

Sε,ε1,ε0,µ(δ) , under the event Ẽn,δ , we have BEB
n /∈ Iε1(µ) implies that BEB

n ∈ Uε,ε1,n(n, δ) .

Lemma 5.13 shows that, if there are still undersampled arms which are not ε1-good, then
either the leader or the challenger was not often selected as leader or challenger. The proof of
Lemma 5.13 is detailed in Appendix E.6.

Lemma 5.13. Let ε1 ≥ 0 and ε ∈ [0, ε1] . Let ∆µ(ε) = mink /∈Iε(µ) ∆k ,
Cµ,ε0(ε) = 2/∆µ(ε) − ε−1

0 , Cµ,ε0(ε, ε1) = 2 maxj /∈Iε1 (µ)
∆j/ε0+1

mink∈Iε(µ)(∆j−∆k) + ε−1
0

and Aε,ε1,ε0,i = max{2/∆µ(ε)2, Cµ,ε0(ε, ε1)2} for all i ∈ i⋆(µ) , Aε,ε1,ε0,i =
max{Cµ,ε0(ε)2, Cµ,ε0(ε, ε1)2} for all i ∈ (Iε(µ) \ i⋆(µ)) ∪ ([K] \ Iε1(µ)) , and otherwise
Aε,ε1,ε0,i = max{Cµ,ε0(ε)2, Cµ,ε0(ε, ε1)2, 2/∆2

i } for all i ∈ Iε1(µ) \ Iε(µ) . For all n > K ,
under event Ẽn,δ , for all t ∈ [n] \ [K] such that Uε,ε1,t(n, δ) ̸= ∅ , there exists it ∈ [K] such that

Tt(it) ≤ 4f̃2(n, δ)
min{β, 1 − β}

Aε,ε1,ε0,it + 3(K − 1)/2 and Tt+1(it) = Tt(it) + 1 .

Combining Lemma 5.7 and 5.13, Lemma 5.14 shows that, for n large enough, there is no un-
dersampled arms which are not ε1-good. The proof of Lemma 5.14 is detailed in Appendix E.7.

Lemma 5.14. Let ε1 ≥ 0 and ε ∈ [0, ε1] . Let ∆µ(ε) , Cµ,ε0(ε, ε1) and Cµ,ε0(ε) as in Lemma 5.13
and

H̄ε,ε1(µ, ε0) := |i⋆(µ)| max{
√

2∆µ(ε)−1, Cµ,ε0(ε, ε1)}2
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+ |(Iε(µ) \ i⋆(µ)) ∪ ([K] \ Iε1(µ))| max{Cµ,ε0(ε), Cµ,ε0(ε, ε1)}2

+
∑

i∈Iε1 (µ)\Iε(µ)
max{Cµ,ε0(ε), Cµ,ε0(ε, ε1),

√
2∆−1

i }2 . (5.8)

Let us define Tε,ε1,ε0,µ(δ) = sup
{
n | n ≤ 4H̄ε,ε1 (µ,ε0)

min{β,1−β} f̃2(n, δ) + 3K2/2
}

. For all n >

Tε,ε1,ε0,µ(δ) , under the event Ẽn,δ , we have Uε,ε1,n(n, δ) = ∅ .

Taking β = 1/2 and combining Lemmas 5.12 and 5.14, one can show that Ẽn,δ ∩ {BEB
n /∈

Iε1(µ)} = ∅ for all n > Eε1,ε0,µ(δ) with

Eε1,ε0,µ(δ) := sup
{
n | n ≤ 8 inf

ε∈[0,ε1]
max{H̄ε,ε1(µ, ε0), H̃ε,ε1(µ, ε0)}f̃2(n, δ) + 5K2/2

}
.

Direct manipulation yields that Hiµ(ε1)(µ, ε0) ≥ infε∈[0,ε1] max{H̄ε,ε1(µ, ε0), H̃ε,ε1(µ, ε0)} . An
inversion formula allows us to conclude the proof (Lemma E.5 in Appendix E.8).

5.5 Experiments

We assess the performance of the EB-TCε0 algorithm on Gaussian instances both in terms of its
empirical stopping time and its empirical simple regret, and we show that it performs favorably
compared to existing algorithms in both settings. For the sake of space, we only show the
results for large sets of arms and a specific instance with |i⋆(µ)| = 2 .

Empirical stopping time We study the impact of large sets of arms (up to K = 1000 ) in
ε-BAI for (ε, δ) = (0.1, 0.01) on the “α = 0.3” scenario of Jamieson and Nowak [2014] which
sets µi = 1 − ((i − 1)/(K − 1))α for all i ∈ [K] . EB-TCε0-IDS with slack ε0 = ε is compared
to existing ε-BAI algorithms having low computational cost. This precludes algorithms such
as ε-Track-and-Stop (TaS) [Garivier and Kaufmann, 2021], Sticky TaS [Degenne and Koolen,
2019] or ε-BAI adaptation of FWS [Wang et al., 2021] and DKM [Degenne et al., 2019]. We also
compare EB-TCε-IDS to those algorithms on benchmarks with a smaller number of arms (see
Appendix J.2.2 in Jourdan et al. [2023b]). We show that EB-TCε performs on par with ε-TaS
and ε-FWS, but outperforms ε-DKM. As Top Two benchmarks with fixed β = 1/2 , we consider
T3C [Shang et al., 2020] (i.e. TS-TC-1/2 ), EB-TCI-1/2 [Jourdan et al., 2022] and UCB-TC-β
(i.e. TTUCB [Jourdan and Degenne, 2023]). To provide a fair comparison, we adapt them to
tackle ε-BAI by using the stopping rule (5.3) and by adapting their sampling rule to use the TCε

challenger from (5.2) (with a penalization logNn,i for EB-TCIε ). We use the heuristic threshold
c(n, δ) = log((1 + logn)/δ) . While it is too small to ensure the (ε, δ)-PAC property, it still yields
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Figure 5.1 – (a) Empirical stopping time on “α = 0.3” instances for varying K of EB-TCε-IDS
with stopping rule (5.3) using (ε, δ) = (0.1, 0.01) . (b) Empirical simple regret on instance µ =
(0.6, 0.6, 0.55, 0.45, 0.3, 0.2) of EB-TCε0 -1/2 with slack ε0 = 0.1 .

an empirical error that is several orders of magnitude lower than δ . Finally, we compare with
LUCB [Kalyanakrishnan et al., 2012] and uniform sampling. For a fair comparison, LUCB uses√

2c(n− 1, δ)/Nn,i as bonus, which is also too small to yield valid confidence intervals. Our
results average over 100 runs, and the standard deviations are displayed. In Figure 5.1(a), we
see that EB-TCε performs on par with the ε-T3C heuristic, and significantly outperforms the
other algorithms. While the scaling inK of ε-EB-TCI and LUCB appears to be close to the one
of EB-TCε, UCB-TCε and uniform sampling obtain a worse one. Figure 5.1(a) also reveals that
the regularization ensured by the TCε challenger is sufficient to ensure enough exploration,
hence other exploration mechanisms are superfluous (TS/UCB leader or TCIε challenger).

Anytime empirical simple regret The EB-TCε0-1/2 algorithmwith ε0 = 0.1 is compared to ex-
isting algorithms on the instance µ = (0.6, 0.6, 0.55, 0.45, 0.3, 0.2) from Garivier and Kaufmann
[2021], which has two best arms. As benchmarks, we consider Doubling Successive Reject
(DSR) and Doubling Sequential Halving (DSH), which are adaptations of the elimination-
based algorithms SR [Audibert et al., 2010] and SH [Karnin et al., 2013]. SR eliminates one
arm with the worst empirical mean at the end of each phase, and SH eliminates half of them
but drops past observations between phase. These doubling-based algorithms have empir-
ical error decreasing by steps: they change their recommendation only before they restart.
In Figure 5.1(b), we plot the average of the simple regret over 10000 runs and the standard
deviation of that average (which is too small to see clearly). We observe that EB-TCε0-1/2
outperforms uniform sampling, as well as DSR and DSH, which both perform worse due to
the dropped observations. The favorable performance of EB-TCε0-1/2 is confirmed on other
instances from Garivier and Kaufmann [2021], and for “two-groups” instances with varying
|i⋆(µ)| (see Figures 10 and 12 in Jourdan et al. [2023b]).

125



Epsilon Best Arm Identification

Supplementary experiments Extensive experiments and implementation details are available
in Appendix J of Jourdan et al. [2023b]. In Appendix J.2.1, we compare the performance of EB-
TCε0 with different slacks ε0 for IDS and β = 1/2 . In Appendix J.2.2, we demonstrate the good
empirical performance of EB-TCε0 compared to state-of-the-art methods in the fixed-confidence
ε-BAI setting, compared to DSR and DSH for the empirical simple regret, and compared to SR
and SH for the probability of 0-error in the fixed-budget setting (Figure 13). We consider a
wide range of instances: random ones, benchmarks from the literature [Jamieson and Nowak,
2014, Garivier and Kaufmann, 2021] and “two-groups” instances with varying |i⋆(µ)| .

5.6 Discussion

In Chapter 5, we proposed the EB-TCε0 algorithm, which is easy to understand and imple-
ment. EB-TCε0 is the first algorithm to be simultaneously asymptotically optimal in the fixed-
confidence ε0-BAI setting (Theorem 5.4), have finite-confidence guarantees (Theorem 5.5), and
have also anytime guarantees on the probability of error at any level ε (Theorem 5.9), hence on
the expected simple regret (Corollary 5.10). Furthermore, we demonstrated that the EB-TCε0

algorithm achieves superior performance compared to other algorithms in benchmarks where
the number of arms is moderate to large.

While our results hold for general 1-sub-Gaussian distributions, the EB-TCε0-IDS algorithm
with slack ε0 > 0 only achieves asymptotic optimality for ε0-BAI with Gaussian bandits. It
would be interesting to have similar guarantees for other classes of distributions (see Chapters 3
and 4) Likewise, our non-asymptotic guarantees on Eν [τε0,δ] and Eν [µ⋆ − µı̂n ] were obtained
for the EB-TCε0-1/2 algorithm. Since better empirical performance is observed when using
IDS, deriving similar (or better) non-asymptotic guarantees for IDS is an interesting avenue for
future work.

The EB-TCε0 algorithm is a promising method to tackle structured bandits. While heuristics
exist for some structured bandits such as Top-k , it would be interesting to efficiently adapt
Top Two methods to deal with a sophisticated structure, e.g. linear bandits. In Part III, we
will provide some elements of answer for ε-BAI in linear bandits. In particular, we extend the
EB-TCε0 algorithm in Chapter 8.

In this chapter, our initial motivation stems from a practical consideration, namely that we
are often satisfied by any “good enough” answer if it avoids the wasteful queries required by
BAI (see Part I). The ε-BAI problem is a natural setting in which the answer is good enough
compared to the other answers. This instance-dependent goodness is defined relative to other
answers. Studied in Chapter 6, the good arm identification (GAI) problem is another possible
setting in which the answer is good enough compared to a fixed threshold. This instance-
independent goodness is defined globally, i.e. agnostic to the other arms.
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Chapter 6

Good Arm Identification

In Chapter 6, we study the GAI problem for vanilla bandits in the anytime setting, as
described in Chapter 1. The presented results are online see Jourdan and Réda [2023] for a
preprint version.

In good arm identification (GAI), the goal is to identify one armwhose average performance
exceeds a given threshold, referred to as a good arm, if it exists. Few works have studied
GAI in the fixed-budget setting, when the sampling budget is fixed beforehand or in the
anytime setting when a recommendation can be asked at any time. We propose APGAI,
an anytime and parameter-free sampling rule for GAI in stochastic bandits. APGAI can be
straightforwardly used in fixed-confidence and fixed-budget settings. First, we derive upper
bounds on its probability of error at any time. They show that adaptive strategies can be
more efficient in detecting the absence of good arms than uniform sampling in several diverse
instances. Second, when APGAI is combined with a stopping rule, we prove upper bounds
on the expected sampling complexity, holding at any confidence level. Finally, we show good
empirical performance of APGAI on synthetic and real-world data. This chapter offers an
extensive overview of the GAI problem in all settings.
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6.1 Introduction

As described in Sections 1.5 and 5.1, the motivation to study the anytime setting comes from
practical considerations. Properly choosing the constraint on δ or T for the fixed-confidence and
fixed-budget settings is challenging for the practitioner since a “good” choice typically depends
on unknown quantities. Moreover, in medical applications (e.g. clinical trials or outcome
scoring), the maximal budget is limited but might not be fixed beforehand. When the collected
data shows sufficient evidence in favor of one answer, an experiment is often stopped before
the initial budget is reached, referred to as early stopping. When additional sampling budgets
have been obtained due to new funding, an experiment can continue after the initial budget has
been consumed, referred to as continuation. While early stopping and continuation are common
practices, both fixed-confidence and fixed-budget settings fail to provide useful guarantees for
them. Recently, the anytime setting has received increased scrutiny as it fills this gap between
theory and practice. When the candidate answer has any time guarantees, the practitioners
can use continuation or early stopping (when combined with a stopping rule).

As described in Chapter 1, the motivation for the GAI problem stems from the sampling
cost of the BAI problem. To avoid wasteful queries, practitioners might be interested in easier
tasks that identify one “good enough” option. While Chapter 5 tackled the ε-BAI problem, we
address the good arm identification (GAI) problem in this chapter. The agent aims to obtain a
good arm, which is defined as an arm whose average performance exceeds a given threshold γ ,
i.e. µi ≥ γ . For instance, in our outcome scoring problem (see Section 6.5), practitioners have
enough information about the distributions to define a meaningful threshold beforehand. GAI
and variants have been studied in the fixed-confidence setting [Kaufmann et al., 2018, Kano
et al., 2019, Tabata et al., 2020], but algorithms for fixed-budget or anytime GAI are missing
despite their practical relevance. In this chapter, we fill this gap by introducing APGAI, an
anytime and parameter-free sampling rule for GAI that is independent of a parameter T or δ
and can be used in the fixed-budget and fixed-confidence settings.

We consider the set Dσ of σ-sub-Gaussian distributions and assume that σi = 1 for all
i ∈ [K] by scaling, hence DK = DK

1 . Let ν ∈ DK with mean vector µ ∈ RK . Given a threshold
γ ∈ R , the set of good arms is defined as Ithr

γ (µ) := {i ∈ [K] | µi ≥ γ} , which we shorten to
Ithr

γ when µ is unambiguous. In GAI, we consider S = {µ ∈ RK | mini∈[K] |µi − γ| > 0} . Let
the gap of arm i compared to γ be ∆γ,i := |µi − γ| > 0 . Let ∆γ,min = mini∈[K] ∆γ,i be the
minimum gap over all arms. Let

H1(µ) :=
∑

i∈[K]
∆−2

γ,i and Hγ(µ) :=
∑

i∈Ithr
γ (µ)

∆−2
γ,i . (6.1)
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At time n , we denote by ı̂n ∈ [K] ∪ {∅} the candidate answer and by In ∈ [K] the arm to
pull next. The probability of error P err

ν,A(n) := Pν(Eerr
µ (n)) of algorithm A on instance ν at time

n is the probability of the error event Eerr
µ (n) = {ı̂n ∈ {∅} ∪ ([K] \ Ithr

γ (µ))} when Ithr
γ (µ) ̸= ∅ ,

otherwise Eerr
µ (n) = {ı̂n ̸= ∅} when Ithr

γ (µ) = ∅ .

Fixed-confidence GAI For fixed-confidence GAI, the algorithm is augmented by a stopping
rule (and a stopping time τ thr

γ,δ ) using a fixed confidence level 1 − δ ∈ (0, 1) which ensures
δ-correctness, i.e. Pν({τ thr

γ,δ < +∞} ∩ Eerr
µ (τ thr

γ,δ )) ≤ δ for all instances ν ∈ DK with mean µ ∈ S .
That requirement leads to a lower bound on the expected sample complexity in any instance.

Lemma 6.1 (Theorem 1 in Degenne and Koolen [2019]). Let δ ∈ (0, 1) and γ ∈
R . For all δ-correct algorithms and all instances ν = N (µ, 1K) with mean µ ∈ S ,
lim infδ→0 Eν [τ thr

γ,δ ]/ log(1/δ) ≥ T thr
γ (ν) , where T thr

γ (ν) = 2 mini∈Ithr
γ (µ) ∆−2

γ,i when Ithr
γ (µ) ̸= ∅

, and T thr
γ (ν) = 2H1(µ) otherwise.

A fixed-confidence algorithm is said to be asymptotically optimal if it is δ-correct, and its ex-
pected sample complexity matches the lower bound, i.e. lim supδ→0 Eν [τ thr

γ,δ ]/ log(1/δ) ≤ T thr
γ (ν)

for all instances ν ∈ DK with mean µ ∈ S .

Contribution 6.1. In Chapter 6, we propose the APGAI algorithm, an anytime and parameter-free
sampling rule for GAI in stochastic bandits, which is independent of a budget T or a confidence δ .
APGAI is the first algorithm that can be employed without modification for fixed-budget GAI (and
without prior knowledge of the budget) and fixed-confidence GAI. Furthermore, it enjoys guarantees
in both settings. As such, APGAI allows continuation and early stopping.

• We show an upper bound on P err
ν,APGAI(n) of the order exp(−O(n/H1(µ))) which holds for

any deterministic time n (Theorem 6.2). Adaptive strategies can be more efficient in detecting
the absence of good arms than uniform sampling (see Section 6.3).

• When combined with a GLR stopping rule, we derive an upper bound on Eν [τ thr
γ,δ ] holding at

any confidence level (Theorem 6.12). In particular, APGAI is asymptotically optimal for GAI
with Gaussian distributions when there is no good arm.

• APGAI is easy to implement, computationally inexpensive, and achieves good empirical
performance in both settings on synthetic and real-world data with an outcome scoring
problem for RNA-sequencing data (see Section 6.5).

This chapter offers an overview of the GAI problem in all settings.
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6.1.1 Related Work

GAI has never been studied in a fixed-budget setting or anytime setting. In the fixed-confidence
setting, several questions have been studied which are closely connected to GAI. Given two
thresholds γL < γU , Tabata et al. [2020] studies the Bad Existence Checking problem, in
which the agent should output “negative” if Ithr

γL
(µ) = ∅ and “positive” if Ithr

γU
(µ) ̸= ∅ . They

propose an elimination-based meta-algorithm called BAEC, and analyze its expected sample
complexity when combined with several index-policy to define the sampling rule. Kano et al.
[2019] considers identifying the whole set of good arms Ithr

γ (µ) with high probability and
sequentially returns the good arms. We refer to that problem as AllGAI. In Kano et al. [2019],
they introduce three index-based GAI algorithms named APT-G, HDoC, and LUCB-G, and
show upper bounds on their expected sample complexity. Many algorithms from previously
mentioned works bear a passing resemblance to the APT algorithm in Locatelli et al. [2016] that
tackles the thresholding bandit problem in the fixed-budget setting. The latter should classify
all arms into Ithr

γ (µ) and Ithr
γ (µ)∁ at the end of the sampling phase. This resemblance lies in

that those algorithms rely on an arm index for sampling, yet the arm indices in BAEC [Tabata
et al., 2020], APT-G, HDoC, and LUCB-G Kano et al. [2019] are different.

Degenne et al. [2019] tackle the “any low arm” problem, which is a GAI problem for
threshold −γ on instance −µ . They introduce Sticky Track-and-Stop, which is asymptotically
optimal in the fixed-confidence setting. In Kaufmann et al. [2018], the “bad arm existence”
problem aims to answer “no” when Ithr

−γ (−µ) = ∅ , and “yes” otherwise. They adapt Thompson
Sampling by conditioning on the “worst event” (named Murphy Sampling). The empiri-
cal pulling proportions are shown to converge towards the allocation realizing T thr

γ (ν) in
Lemma 6.1. Another related framework is the identification with high probability of k arms
from Ithr

γ (µ) [Katz-Samuels and Jamieson, 2020]. They introduce the unverifiable sample complex-
ity. It is the minimum number of samples after which the algorithm always outputs a correct
answer with high probability. It does not require to certify that the output is correct.

6.2 Anytime Parameter-free Sampling Rule

We propose the APGAI (Anytime Parameter-free GAI) algorithm, which is independent of a
budget T or a confidence δ and is summarized in Algorithm 6.1.

Recommendation rule Let Nn,i =
∑

t∈[n−1] 1 (It = i) and µn,i = N−1
n,i

∑
t∈[n−1] 1 (It = i)Xn,i

be the empirical count and empirical mean of arm i ∈ [K] before time n . At time n > K , the
recommendation rule depends on whether the highest empirical mean lies below the threshold
γ or not. When maxi∈[K] µn,i ≤ γ , we recommend the empty set, i.e. ı̂n = ∅ . Otherwise, our
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6.3 Anytime Guarantees on the Probability of Error

1 Input: Threshold γ .
2 Output: Next arm to sample In and next recommendation ı̂n .

3 Set ı̂n ∈
{

{∅} if maxi µn,i ≤ γ

arg maxi

√
Nn,i(µn,i − γ)+ otherwise ; // Recommendation

4 Set In ∈
{

arg mini∈[K]
√
Nn,i(γ − µn,i)+ if maxi∈[K] µn,i ≤ γ

{ı̂n} otherwise ; // Arm to pull

Algorithm 6.1: APGAI algorithm.

candidate answer is the arm which is the most likely to be a good arm given the collected
evidence, i.e. ı̂n ∈ arg maxi∈[K]

√
Nn,i(µn,i − γ)+ .

Sampling rule The next arm to pull is based on the APTP indices introduced by [Tabata et al.,
2020] as a modification to the APT indices [Locatelli et al., 2016]. At time n > K , we pull arm
In ∈ arg maxi∈[K]

√
Nn,i(µn,i − γ) . To emphasize the link with our recommendation rule, this

sampling rule can be written as In ∈ arg mini∈[K]
√
Nn,i(γ − µn,i)+ when maxi∈[K] µn,i ≤ γ ,

and In ∈ arg maxi∈[K]
√
Nn,i(µn,i − γ)+ otherwise. Ties are broken arbitrarily at random, up

to the constraint that ı̂n = In when maxi∈[K] µn,i > γ . This formulation highlights the dual
behavior of APGAI. When maxi∈[K] µn,i ≤ γ , APGAI collects additional observations to verify
that there are no good arms, hence pulling the arm which is the least likely to not be a good
arm. Otherwise, APGAI gathers more samples to confirm its current belief that there is at least
one good arm, hence pulling the arm that is the most likely to be a good arm.

Differences to BAEC While both APGAI and BAEC(APTP ) rely on the APTP indices [Tabata
et al., 2020], they differ significantly. BAEC is an elimination-basedmeta-algorithm that samples
active arms, and discards arms whose upper confidence bounds (UCB) on the empirical
means are lower than γU . The recommendation rule of BAEC is only defined at the stopping
time, and depends on lower confidence bounds (LCB) and UCB. Since the UCB/LCB indices
depend inversely on the gap γU − γL > 0 and on the confidence δ , BAEC is neither anytime
nor parameter-free. More importantly, APGAI can be used without modification for fixed-
confidence or fixed-budget GAI. In contrast, BAEC can solely be used in the fixed-confidence
setting when γU > γL , hence not for GAI itself (i.e. γU = γL ).

6.3 Anytime Guarantees on the Probability of Error

To allow continuation or (deterministic) early stopping, the candidate answer of APGAI should
be associated with any time theoretical guarantees. Theorem 6.2 shows an upper bound of
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the order exp(−O(n/H1(µ))) for P err
ν,A(n) that holds for any deterministic time n . The proof of

Theorem 6.2 is sketched in Section 6.3.3.

Theorem 6.2. Let p(x) = x− 0.5 log x . The APGAI algorithm A satisfies than, for all ν ∈ DK

with mean µ ∈ S , for all n > K + 2|Ithr
γ (µ)| ,

P err
ν,A(n) ≤ Ke

√
2 log(e2n) exp

(
−p

(
n−K − 2|Ithr

γ (µ)|
2αηµH1(µ)

))

where H1(µ) as in (6.1), (α1, αγ) = (9, 2) and ηµ = 1 + (γ − 1)1
(
Ithr

γ (µ) ̸= ∅
)
.

Theorem 6.2 holds for any deterministic time n > K + 2|Ithr
γ (µ)| and any 1-sub-Gaussian

instance ν . In the asymptotic regime where n → +∞ , Theorem 6.2 shows that APGAI satisfies

lim sup
n→+∞

n

− logP err
ν,A(n) ≤ 2αηµH1(µ) with (α1, αγ) = (9, 2) .

Comparison with uniform sampling Despite the practical relevance of anytime and fixed-
budget guarantees, APGAI is the first algorithm enjoying guarantees on the probability of error
in GAI at any time n (hence at a given budget T ). As a baseline, we consider the uniform
round-robin algorithm, named Unif, which returns the best empirical arm at time n if its
empirical mean is higher than γ , and returns ∅ otherwise. Let n such that (n− 1)/K ∈ N , the
recommendation of Unif is equivalent to the one used in APGAI, i.e. arg maxi∈[K]

√
Nn,i(µn,i −

γ)+ = arg maxi∈[K] µn,i . As the two algorithms only differ by their sampling rule, we can
measure the benefits of adaptive sampling. It is possible to derive anytime upper bounds on
P err

ν,Unif(n) (see Theorem 4 inAppendix C of Jourdan andRéda [2023]). In the asymptotic regime,
the upper bound for Unif has a rate in 2K∆−2

γ,min when Ithr
γ (µ) = ∅ , and 4K mini∈Ithr

γ (µ) ∆−2
γ,i

otherwise. While the latter rate is better than 2H1(µ) when arms have dissimilar gaps, APGAI
has better guarantees than Unif when there is no good arm. Our experiments show that APGAI
outperforms Unif on many instances (Figures 6.1 and 6.2), and is on par with it otherwise.

Worst-case lower bound Degenne [2023] recently studied the existence of complexity in
fixed-budget pure exploration. While there is a complexity T thr

γ (ν) as in Lemma 6.1 for the
fixed-confidence setting, Theorem 6 from Degenne [2023] shows that a sequence of fixed-
budget algorithms (AT )T (where AT denotes the algorithm using fixed budget T ) cannot have
a better asymptotic rate thanKT thr

γ (ν) on all Gaussian instances

∃ν ∈ DK , lim sup
T →+∞

T

− logP err
ν,AT

(T ) ≥ KT thr
γ (ν) . (6.2)
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6.3 Anytime Guarantees on the Probability of Error

Unif achieves the rate KT thr
γ (ν) when Ithr

γ (µ) ̸= ∅ , but suffers from worse guarantees other-
wise. Conversely, APGAI achieves the rate in T thr

γ (ν) when Ithr
γ (µ) = ∅ , but has sub-optimal

guarantees otherwise. It does not conflict with (6.2) e.g. considering µ with Ithr
γ ̸= ∅ and such

that there exists an arm i ∈ [K] with ∆γ,i ≤ maxi∈Ithr
γ (µ) ∆γ,i/

√
K/2 − 1 . Experiments in

Section 6.5 suggest that the sub-optimal dependency when Ithr
γ (µ) ̸= ∅ is not aligned with the

good practical performance of APGAI. Formally proving better guarantees when Ithr
γ (µ) ̸= ∅ is

a direction for future work.
In fixed-budget GAI, a good strategy has different sampling modes depending on whether

there is a good arm or not. Since wrongfully committing to one of those modes too early
will incur higher error, it is challenging to find the perfect trade-off adaptively. Designing an
algorithm whose guarantees are comparable to (6.2) for all instances is an open problem.

6.3.1 Benchmark: Other GAI Algorithms

To go beyond Unif, we propose and analyze additional GAI algorithms. A summary of the
comparison with APGAI is shown in Table 6.1.

From BAI to GAI Algorithms

Since a BAI algorithm outputs the arm that is believed to have the highest mean, it can be
adapted to GAI by comparing the mean of the returned arm to the known threshold. We study
the GAI adaptations of two fixed-budget BAI algorithms: Successive Rejects (SR) [Audibert
et al., 2010] and Sequential Halving (SH) [Karnin et al., 2013]. SR-G and SH-G return ı̂T = ∅
when µn,iT ≤ γ and ı̂T = iT otherwise, where iT is the arm that would be recommended for
the BAI problem, i.e. the last arm that was not eliminated.

It is possible to derive an upper bound on P err
ν,SR-G(T ) and P err

ν,SH-G(T ) at the fixed budget T
(see Theorems 5 and 6 in Appendix C of Jourdan and Réda [2023]). In the asymptotic regime,
their rate is in 4 log(K)∆−2

γ,min when Ithr
γ (µ) = ∅ , otherwise

O(log(K) max{ max
i∈Ithr

γ

∆−2
γ,i ,max

k>I⋆
k(max

i∈[K]
µi − µ(k))−2})

with I⋆ = | arg maxi∈[K] µi| and µ(k) be the kth largest mean in vector µ . Recently, Zhao et al.
[2023] have provided a finer analysis of SH. Using their results yields improved rates. Those
rates are better than 2H1(µ) when there is one good arm with a large mean and the remaining
arms have means slightly smaller than γ . However, APGAI has better guarantees than SR-G
and SH-G when there is one good arm with a mean slightly smaller than the largest mean.
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Table 6.1 – Asymptotic error rate C(µ) of algorithm A on ν , i.e. lim supn→+∞ n log(1/P err
ν,A(n))−1 ≤ C(µ)

. (†) Fixed-budget algorithmAn,ν with prior knowledge on ν . H1(µ) as in (6.1), ∆γ,min := mini∈[K] ∆γ,i

, ∆̃−2 := max{maxi∈Ithr
γ (µ) ∆−2

γ,i ,maxk>I⋆ k(maxi∈[K] µi − µ(k))−2} , ∆max := maxi∈Ithr
γ (µ) ∆γ,i , I⋆ =

| arg maxi∈[K] µi| and ∆̂ := maxi∈Ithr
γ (µ) ∆γ,i + mini ̸∈Ithr

γ (µ) ∆γ,i .
Algorithm A Ithr

γ (µ) = ∅ Ithr
γ (µ) ̸= ∅

APGAI [Th. 6.2] 18H1(µ) 4H1(µ)
Unif [Th. 4 in Jourdan and Réda [2023]] 2K∆−2

γ,min 4K∆−2
max

DSR-G [Th. 5 in Jourdan and Réda [2023]] 16 logK∆−2
γ,min 4 logK∆̃−2

DSH-G [Th. 6 in Jourdan and Réda [2023]] 16 logK∆−2
γ,min 4 logK∆̃−2

PKGAI( ⋆ ) [Th. 7 in Jourdan and Réda [2023]]† 2H1(µ) 2H1(µ)
PKGAI(Unif) [Th. 8 in Jourdan and Réda [2023]]† 2H1(µ) 2K∆̂−2

Doubling trick The doubling trick allows the conversion of any fixed-budget algorithm into
an anytime algorithm. It considers a sequence of algorithms that are run with increasing
budgets (Tk)k≥1 , and recommends the answer outputted by the last instance. Zhao et al.
[2023] shows that Doubling SH obtains the same guarantees as SH in BAI at the cost of a
multiplicative factor 4 in the rate, and similar results would hold for its GAI counterpart DSH-G
(as well as for DSR-G). Empirically, our experiments show that APGAI is always better than
DSR-G and DSH-G (Figures 6.1 and 6.2).

Prior Knowledge-based GAI Algorithms

Several fixed-budget BAI algorithms assume that the agent has access to some prior knowledge
on unknown quantities to design upper/lower confidence bounds (UCB/LCB), e.g.UCB-E
[Audibert et al., 2010] and UGapEb [Gabillon et al., 2012]. While this assumption is often not
realistic, it yields better guarantees. We also investigate those approaches for fixed-budget GAI
by proposing an elimination-based meta-algorithm for fixed-budget GAI called PKGAI (Prior
Knowledge-based GAI, see Appendix D of Jourdan and Réda [2023]). As for BAEC, PKGAI( ⋆
) takes as input an index policy ⋆ that is used to define the sampling rule. The main difference
to BAEC lies in the definition of the UCB/LCB since they depend both on the budget T and on
knowledge of H1(µ) and Hγ(µ) .

We provide upper confidence bounds on the probability of error at time T holding for any
choice of indices and uniform round-robin sampling (Theorems 7 and 8 in Appendix D of
Jourdan and Réda [2023]). The obtained upper bounds on P err

ν,PKGAI(T ) are marginally lower
than the ones obtained for APGAI, while APGAI does not require to know H1(µ) or Hγ(µ) .
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6.3.2 Unverifiable Sample Complexity

The unverifiable sample complexity was defined in Katz-Samuels and Jamieson [2020] as the
smallest stopping time τ thr

U,γ,δ after which an algorithm always outputs a correct answer with
probability at least 1− δ . In GAI, this means that algorithm A satisfies Pν(

⋃
n≥τ thr

U,γ,δ
Eerr

µ (n)) ≤ δ

. Compared to the fixed-confidence setting, it does not require to certify that the candidate
answer is correct. Zhao et al. [2023] notice that anytime bounds on the error can imply an
unverifiable sample complexity bound. It is possible to derive a deterministic upper bound on
the unverifiable sample complexity τ thr

U,γ,δ of APGAI, i.e. τ thr
U,γ,δ ≤ Uδ(µ) almost surely, with

Uδ(µ) =δ→0 2αηµH1(µ) log(1/δ) + O(log log(1/δ)) ,

with ηµ = 1 + (γ − 1)1
(
Ithr

γ (µ) ̸= ∅
)
and (α1, αγ) = (9, 2) (see Theorem 3 in Appendix B.3 of

Jourdan and Réda [2023]). While such upper bounds are known in BAI [Katz-Samuels and
Jamieson, 2020, Zhao et al., 2023, Jourdan et al., 2023b], this is the first result for GAI.

6.3.3 Proof of Theorem 6.2

To prove Theorem 6.2, we use a similar technique as the one detailed in Section 5.4.1 of Chapter 5.
Instead of relying on Lemma 5.7, the key technical tool is Lemma 6.3 (proven in Appendix F.1).

Lemma 6.3. Let δ ∈ (0, 1] and n > K . Assume there exists a sequence of events (At(n, δ))K<t≤n

and positive reals (Di(n, δ))i∈[K] such that, for all t ∈ {K + 1, · · ·n} , under the event At(n, δ) ,

∃it ∈ [K], Nt,it ≤ Dit(n, δ) and Nt+1,it = Nt,it + 1 .

Then, we have
∑n

t=K+1 1 (At(n, δ)) ≤
∑

i∈[K]Di(n, δ) .

We first define concentration events to control the deviations of the random variables used
by APGAI. For all n > K and δ ∈ (0, 1) , let

Ẽn,δ =
{

∀i ∈ [K],∀t ≤ n, |µn,i − µi| <
√

2f̃1(n, δ)/Nn,i

}
,

with f̃1(n, δ) = 1
2W−1(2 log(1/δ) + 2 log(2 + logn) + 2) with W−1(x) = −W−1(−e−x) for all

x ≥ 1 . We recall thatW−1(x) ≈ x+ log(x) (see Appendix A). Using concentration arguments,
it is straightforward to show that Pν(Ẽ∁

n,δ) ≤ Kδ .
Using Lemma 5.11 in Chapter 5, the proof boils down to constructing a time Tµ(δ) such

that Ẽn,δ ⊆ Eerr
µ (n) for n > Tµ(δ) since it yields that P err

ν,A(n) ≤ K inf{δ | n > Tµ(δ)} .
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Instances where Ithr
γ (µ) = ∅ In that case, we have Eerr

µ (n) = {ı̂n ̸= ∅} . Let t ≤ n . Let us
denote by Ut(n, δ) =

{
i ∈ [K] | Nt,i ≤ 2f̃1(n, δ)∆−2

γ,i

}
the set of undersampled arms at time t .

Lemma 6.4 shows that a necessary condition for an error to occur at time n is that there are
undersampled arms.

Lemma 6.4. Under the event Ẽn,δ , ı̂n ̸= ∅ implies that Un(n, δ) ̸= ∅ .

Proof. Not recommending ∅ happens when the largest empirical mean exceeds γ . Let ı̂n =
arg maxi∈[K]

√
Nn,i(µn,i − γ)+ which satisfies µn,̂ın > γ . Under Ẽn,δ , we have γ < µn,̂ın ≤

µı̂n +
√

2f̃1(n, δ)/Nn,̂ın hence ı̂n ∈ Un(n, δ) . ■

Lemma 6.5 shows that if there are still undersampled arms at time t , then It has not been
sampled enough. The proof of Lemma 6.5 is detailed in Appendix F.2.

Lemma 6.5. Under event Ẽn,δ , for all t ≤ n such that Ut(n, δ) ̸= ∅ , we have Nt,It ≤
18f̃1(n, δ)∆−2

γ,It
and Nt+1,It = Nt,It + 1 .

Lemma 6.6 provides a time after which all arms are sampled enough, hence no error will
be made. The proof of Lemma 6.6 is detailed in Appendix F.3.

Lemma 6.6. Let us define Tµ(δ) = sup
{
n | n ≤ 18H1(µ)f̃1(n, δ) +K

}
. For all n > Tµ(δ) ,

under the event Ẽn,δ , we have Un(n, δ) = ∅ .

Combining Lemmas 6.6 and 6.4, an inversion formula (Lemma E.5 in Appendix E.8) yields

Pν (̂ın ̸= ∅) ≤ K inf{δ | n > Tµ(δ)} ≤ Ke
√

2(2 + logn)
√

n−K

18H1(µ) exp
(

− n−K

18H1(µ)

)
.

Instances where Ithr
γ (µ) ̸= ∅ In that case, we have Eerr

µ (n) = {ı̂n ∈ {∅} ∪ ([K] \ Ithr
γ (µ))}

. Let t ≤ n . Let us denote by Ut(n, δ) =
{
i ∈ [K] | Nn,i ≤

(√
2f̃1(n, δ)∆−2

γ,i + 1
)2}

the set of
undersampled arms at time t . Lemma 6.7 shows that a necessary condition to recommend ∅ at
time n is that all the good arms are undersampled and that a necessary condition to recommend
an arm in Ithr

γ (µ)∁ at time n is that this arm is undersampled and will be sampled next.
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Lemma 6.7. Under the event Ẽn,δ , ı̂n = ∅ implies that Ithr
γ (µ) ⊆ Un(n, δ) , and ı̂n ∈ Ithr

γ (µ)∁

implies that ı̂n = In ∈ Ithr
γ (µ)∁ ∩ Un(n, δ) .

Proof. Suppose that ı̂n = ∅ , hence max µn,i ≤ γ . Then, for all i ∈ Ithr
γ (µ) , we have γ ≥

µn,i ≥ µi −
√

2f̃1(n, δ)/Nn,i , hence Ithr
γ (µ) ⊆ Un(n, δ) . Suppose that ı̂n ∈ Ithr

γ (µ)∁ , hence
maxi µn,i > γ . Since ı̂n = In ∈ arg maxi∈[K]

√
Nn,i(µn,i − γ)+ , we have µn,̂ın > γ . Then, we

have γ < µn,In ≤ µIn +
√

2f̃1(n, δ)/Nn,In , hence ı̂n = In ∈ Ithr
γ (µ)∁ ∩ Un(n, δ) . ■

Lemma 6.8 shows that having all the good arms undersampled implies that the next arm
we will pull has not been sampled enough. The proof of Lemma 6.8 is detailed in Appendix F.4.

Lemma 6.8. Under the event Ẽn,δ , for all t ≤ n such that Ithr
γ (µ) ⊆ Ut(n, δ) , we have Nt,It ≤

DIt(n, δ) and Nt+1,It = Nt,It + 1 , whereDi(n, δ) =
(

∆−1
γ,i

√
2f̃1(n, δ) + 1

)2
for all i ∈ Ithr

γ (µ)

and Di(n, δ) = 2f̃1(n, δ)∆−2
γ,i for all i /∈ Ithr

γ (µ) .

Lemma 6.9 shows that having a good arm that is sampled enough is a sufficient condition
to recommend a good arm at time n . The proof of Lemma 6.9 is detailed in Appendix F.5.

Lemma 6.9. Under the event Ẽn,δ , Ithr
γ (µ) ∩ Un(n, δ)∁ ̸= ∅ implies that ı̂n ∈ Ithr

γ (µ) .

Lemma 6.10 provides a time after which there exists a good arm that is sampled enough,
hence no error will be made. The proof of Lemma 6.10 is detailed in Appendix F.6.

Lemma 6.10. Let us define Sµ(δ) = sup
{
n | n ≤ 4H1(µ)f̃1(n, δ) +K + 2|Ithr

γ (µ)|
}
. For all

n > Sµ(δ) , under the event Ẽn,δ , we have Ithr
γ (µ) ∩ Un(n, δ)∁ ̸= ∅ and ı̂n ∈ Ithr

γ (µ) .

Combining Lemmas 6.10 and 6.7, an inversion formula (Lemma E.5 in Appendix E.8) yields

Pν({ı̂n = ∅} ∪ {ı̂n ∈ Ithr
γ (µ)∁}) ≤ K inf{δ | n > Sµ(δ)}

≤ Ke
√

2(2 + logn)

√
n−K − 2|Ithr

γ (µ)|
4H1(µ) exp

(
−
n−K − 2|Ithr

γ (µ)|
4H1(µ)

)
.
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6.4 Fixed-confidence Guarantees

In some applications, the practitioner has a strict constraint on the confidence δ associated
with the candidate answer. This constraint simultaneously supersedes any limitation on the
sampling budget and allows early stopping when enough evidence is collected (random since
data-dependent). In the fixed-confidence setting, an identification strategy should define a
stopping rule in addition to the sampling and recommendation rules.

Stopping rule We couple APGAI with the GLR stopping rule [Garivier and Kaufmann, 2016]
for GAI, which coincides with the Box stopping rule introduced in Kaufmann et al. [2018]. At
fixed confidence δ , we stop at τ thr

γ,δ := min(τ>,δ, τ<,δ) where

τ>,δ := inf
{
n | max

i∈[K]

√
Nn,i(µn,i − γ)+ >

√
2c(n− 1, δ)

}
,

τ<,δ := inf
{
n | min

i∈[K]

√
Nn,i(γ − µn,i)+ >

√
2c(n− 1, δ)

}
,

(6.3)

and c : N × (0, 1) → R+ is a threshold function. Lemma 6.11 gives a threshold ensuring that
the GLR stopping rule (6.3) is δ-correct for all δ ∈ (0, 1) , independently of the sampling rule.
The proof of Lemma 6.11 is detailed in Appendix F.7.

Lemma 6.11. LetW−1(x) = −W−1(−e−x) for all x ≥ 1 , whereW−1 is the negative branch of
the LambertW function. It satisfiesW−1(x) ≈ x+ log x . Let δ ∈ (0, 1) . Given any sampling
rule, using the threshold

2c(n, δ) = W−1(2 log(K/δ) + 4 log log(e4n) + 1/2) (6.4)

in the GLR stopping rule (6.3) yields a δ-correct algorithm for 1-sub-Gaussian distributions with
mean in S .

Non-asymptotic upper bound Theorem 6.12 gives an upper bound on the expected sample
complexity of the resulting algorithm holding for any confidence δ . The proof of Theorem 6.12
is detailed in Appendix F.8.

Theorem 6.12. Let δ ∈ (0, 1) . Combined with GLR stopping (6.3) using threshold (6.4), the
APGAI algorithm is δ-correct and it satisfies that, for all ν ∈ DK with mean µ ∈ S ,

Eν [τ thr
γ,δ ] ≤ Cµ(δ) +Kπ2/6 + 1 ,
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where ηµ := 1 + (γ − 1)1
(
Ithr

γ (µ) ̸= ∅
)
and

Cµ(δ) := sup
{
n | n− 1 ≤ 2Hηµ(µ)

(√
c(n− 1, δ) +

√
3 logn

)2
+Dηµ(µ)

}
,

with H1(µ) and Hγ(µ) as in (6.1). D1(µ) and Dγ(µ) satisfy D1(µ) ≈ Dγ(µ) =
O(H1(µ) logH1(µ)) . In the asymptotic regime, we obtain lim supδ→0 Eν [τ thr

γ,δ ]/ log(1/δ) ≤
2Hηµ(µ) since Cµ(δ) =δ→0 2Hηµ(µ) log(1/δ) + O(log log(1/δ)) .

Most importantly, Theorem 6.12 holds for any confidence δ ∈ (0, 1) and any 1-sub-Gaussian
instance ν . Theorem 6.12 shows that lim supδ→0 Eν [τ thr

γ,δ ]/ log(1/δ) ≤ 2Hηµ(µ) in the asymptotic
regime. This implies that APGAI is asymptotically optimal for Gaussian distributions when
Ithr

γ = ∅ . When there are good arms, our upper bound scales as Hγ(µ) log(1/δ) , which is
better than the scaling in H1(µ) log(1/δ) obtained for the unverifiable sample complexity.

However, when Ithr
γ (µ) ̸= ∅ , our upper bound is sub-optimal compared to 2 mini∈[K] ∆−2

γ,i

(see Lemma 6.1). This sub-optimal scaling stems from the greediness of APGAIwhen Ithr
γ (µ) ̸=

∅ since there is no mechanism to detect an arm that is easiest-to-verify, i.e. arg maxi∈Ithr
γ (µ) ∆γ,i .

Empirically, we observe that APGAI can suffer from large outliers when there are good arms
with dissimilar gaps and that adding forced exploration or randomization (with Thompson
Sampling) circumvents this issue. Intuitively, a purely asymptotic analysis of APGAI would
yield the dependency 2 maxi∈Ithr

γ (µ) ∆−2
γ,i which is independent from |Ithr

γ (µ)| . Compared
to asymptotic results, our non-asymptotic guarantees hold for reasonable values of δ (not
necessarily close to 0 ), with a δ-independent scaling of the order O(H1(µ) logH1(µ)) .

Comparison with existing upper bounds Table 6.2 summarizes the asymptotic scaling of
the upper bound on the expected sample complexity of existing GAI algorithms. While most
GAI algorithms have better asymptotic guarantees when Ithr

γ (µ) ̸= ∅ , APGAI is the only one
of them which has any time guarantees on the probability of error (Theorem 6.2). However,

Table 6.2 – Asymptotic upper bound 2C(µ) on the expected sample complexity of algorithm A on ν ,
i.e. lim supδ→0 Eν [τ thr

γ,δ ]/ log(1/δ) ≤ 2C(µ) . ( § ) Requires an ordering on the possible answers [K] ∪ {∅}
. H1(µ) and Hγ(µ) as in (6.1), ∆γ,max := maxi∈Ithr

γ
∆γ,i .

Algorithm A Ithr
γ (µ) = ∅ Ithr

γ (µ) ̸= ∅

APGAI[Th. 6.12] H1(µ) Hγ(µ)
S-TaS [Degenne et al., 2019] § H1(µ) ∆−2

γ,max
HDoC [Kano et al., 2019] H1(µ) ∆−2

γ,max
APT-G, LUCB-G [Kano et al., 2019] H1(µ) −
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we emphasize that APGAI is not the best algorithm to tackle fixed-confidence GAI since it
is designed for anytime GAI. Sticky Track-and-Stop (S-TaS) is asymptotically optimal for the
“any low arm” problem [Degenne et al., 2019], hence for GAI too. Even though GAI is one of
the few settings where S-TaS admits a computationally tractable implementation, its empirical
performance heavily relies on fixed ordering for the set of possible answers. This partly explains
the lack of non-asymptotic guarantees for S-TaS that is asymptotic by nature, while APGAI
has non-asymptotic guarantees. For the “bad arm existence” problem, Kaufmann et al. [2018]
proves that the empirical proportion (Nn,i/(n− 1))i∈[K] of Murphy Sampling converges almost
surely towards the optimal allocation realizing the asymptotic lower bound of Lemma 6.1. While
their result implies that limδ→0 τ

thr
γ,δ / log(1/δ) = T thr

γ (ν) almost surely, the authors provide no
upper bound on the expected sample complexity of Murphy Sampling. Finally, we consider
the AllGAI algorithms introduced in Kano et al. [2019] (HDoC, LUCB-G, and APT-G) that
enjoy theoretical guarantees for some GAI instances. When Ithr

γ (µ) = ∅ , all three algorithms
have an upper bound of the form 2H1(µ) log(1/δ) + O(log log(1/δ)) . When Ithr

γ (µ) ̸= ∅ , only
HDoC admits an upper bound on the expected time to return one good arm, which is of the
form 2 mini∈Ithr

γ (µ) ∆−2
γ,i log(1/δ) + O(log log(1/δ)) .

The indices used for the elimination and recommendation in BAEC [Tabata et al., 2020]
have a dependence in O(− log(γU − γL)) , hence BAEC is not defined for GAI where γU = γL .
While it is possible to use UCB/LCB that are agnostic to the gap γU − γL > 0 , these choices
have not been studied in Tabata et al. [2020]. Extrapolating the theoretical guarantees of BAEC
when γL → γU , one would expect an upper bound on its expected sample complexity of the
form 2H1(µ) log(1/δ) + O((log(1/δ))2/3) .

6.5 Experiments

We assess the empirical performance of the APGAI in terms of empirical error, as well as
empirical stopping time. Overall, APGAI performs favorably compared to other algorithms
in both settings. Moreover, its empirical performance exceeds what its theoretical guarantees
would suggest. This discrepancy between theory and practice paves the way for interesting
future research. Extensive experiments and implementation details are available in Appendix I
of Jourdan and Réda [2023].

Outcome scoring application Our real-life motivation is outcome scoring from gene activity
(transcriptomic) data. This application focuses on the treatment of encephalopathy of prema-
turity in infants. The goal is to determine the optimal protocol for the administration of stem
cells among K = 18 realistic possibilities. Our collaborators tested all treatments and made
RNA-related measurements on treated samples. Computed on 3 technical replicates, the mean
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Figure 6.1 – Fixed-budget empirical error on our outcome scoring application.

value in [−1, 1] corresponds to a cosine score computed between gene activity changes in treated
and healthy samples, i.e. µ = (0.8, 0.791, 0.676, 0.545, 0.538, 0.506, 0.36, 0.329, 0.306, 0.274, 0.241
, 0.203, 0.112, 0.084, 0.081, 0.007,−0.018,−0.120) . When the mean is higher than γ = 0.5 , the
treatment is considered significantly positive. Traditional approaches use grid search with a
uniform allocation. We model this application as a Bernoulli instance, i.e. observations from
arm i are drawn from a Bernoulli distribution with mean (µi)+ (which is 1/2-sub-Gaussian).

Fixed-budget empirical error The APGAI algorithm is compared to fixed-budget GAI al-
gorithms: SR-G, SH-G, PKGAI, and Unif. For a fair comparison, the threshold functions in
PKGAI do not use prior knowledge. Several index policies are considered for PKGAI: Unif,
APTP , UCB, and LCB-G. At time n , the latter selects among the set Sn of active candidates
In ∈ arg maxi∈Sn

√
Nn,iLCB(n, i) , where LCB(n, i) is the lower confidence bound on µi − γ

at time n . For a budget T up to 200 , our results average over 1, 000 runs, and confidence
intervals are displayed. On our outcome scoring application, Figure 6.1 first shows that all
uniform samplings (SH-G, SR-G, Unif, and PKGAI(Unif)) are less efficient at detecting one of
the good arms contrary to the adaptive strategies. Moreover, APGAI performs as well as the
elimination-based algorithms PKGAI( ⋆ ), while allowing early stopping. In Appendix I.3 of
Jourdan and Réda [2023], we confirm the good performance of APGAI in terms of fixed-budget
empirical error on other instances.

Anytime empirical error The APGAI algorithm is compared to any time GAI algorithms:
DSR-G, DSH-G (see Section 6.3.1) and Unif. Since DSH-G has poor empirical performance,
we consider the heuristic DSH-G-WR in which each SH instance keeps its history instead of
discarding it. On two Gaussian instances ( Ithr

γ (µ) ̸= ∅ and Ithr
γ (µ) = ∅ ), Figure 6.2 shows that
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Figure 6.2 – Anytime empirical error on Gaussian instances (a) µ ∈ {0.55, 0.45}10 where |Ithr
γ (µ)| = 3

for γ = 0.5 and (b) µ = −(0.1, 0.4, 0.5, 0.6) for γ = 0 .

Figure 6.3 – Empirical stopping time ( δ = 0.01 ) on Gaussian instances µ ∈ {0.5,−0.5}100 where
|Ithr

γ (µ)| ∈ {5k}k∈[19] for γ = 0 .

APGAI has significantly smaller empirical error compared to Unif, which is itself better than
DSR-G and DSH-G-WR. Our results average over 10, 000 runs, and confidence intervals are
displayed. In Appendix I.4 of Jourdan and Réda [2023], we confirm the good performance of
APGAI in terms of anytime empirical error on other instances, e.g.when Ithr

γ (µ) ̸= ∅ and when
|Ithr

γ (µ)| varies. Overall, APGAI appears to have better empirical performance than suggested
by Theorem 6.2 when Ithr

γ (µ) ̸= ∅ .

Empirical stopping time The APGAI algorithm is compared to fixed-confidence GAI algo-
rithms using theGLR stopping rule (6.3)with threshold (6.4) and confidence δ = 0.01: Murphy
Sampling (MS [Kaufmann et al., 2018]), HDoC, LUCB-G [Kano et al., 2019], Track-and-Stop
for GAI (TaS [Garivier and Kaufmann, 2016]) and Unif. In Figure 6.3, we study the impact of
the number of good arms by considering Gaussian instances with two groups of arms. Our
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results average over 1, 000 runs, and the standard deviations are displayed. Figure 6.3 shows
that the empirical performance of APGAI is invariant to varying |Ithr

γ (µ)| , and comparable to
the one of TaS. In comparison, the other algorithms have worse performance, and they suffer
from increased |Ithr

γ (µ)| since they have an exploration bonus for each good arm. In contrast,
APGAI is greedy enough to focus its allocation to one of the good arms. While APGAI achieves
the best performance when there is no good arm, it can suffer from large outliers when good
arms have dissimilar means. To circumvent this problem, it is enough to add forced exploration
to APGAI or randomization (with Thompson Sampling). While APGAI was designed for any
time GAI, it is remarkable that it also has theoretical guarantees in fixed-confidence GAI and
relatively small empirical stopping time.

6.6 Discussion

In Chapter 6, we proposed APGAI, the first anytime and parameter-free sampling strategy for
GAI in stochastic bandits, which is independent of a budget T or a confidence δ . In addition
to showing its good empirical performance, we also provided guarantees on its probability
of error at any deterministic time n (Theorem 6.2) and on its expected sample complexity at
any confidence δ when combined with the GLR stopping time (6.3) (Theorem 6.12). As such,
APGAI allows continuation and early stopping. We reviewed and analyzed a large number of
baselines for each GAI setting for comparison.

When there are good arms, the optimal allocation in GAI is supported solely on i⋆(µ) . This
sparsity of the optimal allocation also appears in BAI when considering the limit of ∆min → 0
, i.e. allocation supported on the arms with the two highest means. Since the arguments in
Appendix C of Komiyama et al. [2022] mainly rely on this sparsity, we conjecture that, for
any asymptotically optimal GAI algorithm, there exist instances in which the error probability
cannot decay exponentially with the horizon. Given that ε-BAI has dense optimal allocation
(even asymptotically for ∆min → 0 ), their argument does not apply, hence we could provide
strong anytime guarantees for the EB-TCε0 algorithm (Chapter 5). However, in GAI, we do
not believe an algorithm could have such strong any time guarantees. This explains why the
APGAI algorithm appears to be less satisfactory in tackling GAI.

While we considered unstructured multi-armed bandits, many applications have a known
structure. Investigating the GAI problem on e.g. linear or infinitely-armed bandits would be
interesting subsequent work. In particular, working in a structured framework when facing a
possibly infinite number of arms would bring out more compelling questions about how to
explore the arm space in a tractable and meaningful way. While linear bandits are the topic of
Part III, we will discuss ε-BAI instead of GAI.
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Part III

Epsilon Best Arm Identification in
Linear Bandits

145





Chapter 7

Choosing the Easiest-To-Verify Answer

In Chapter 7, we study the ε-BAI problem for linear bandit in the fixed-confidence setting,
as described in Chapter 1 and studied in Chapter 5 for the vanilla setting. The presented results
were published in Jourdan and Degenne [2022].

While best-arm identification for linear bandits has been extensively studied in recent
years, few works have been dedicated to identifying one arm that is ε-close to the best one
(and not exactly the best one). In this problem with several correct answers, an identification
algorithm should focus on one candidate among those answers and verify that it is correct. We
demonstrate that picking the answer with the highest mean does not allow an algorithm to
reach asymptotic optimality in terms of expected sample complexity. Instead, an easiest-to-verify
answer should be identified. Using that insight to choose the candidate answer carefully, we
develop a simple procedure to adapt best-arm identification algorithms to tackle ε-best-answer
identification in transductive linear stochastic bandits. Finally, we propose an asymptotically
optimal algorithm for this setting, which is shown to achieve competitive empirical performance
against existing modified best-arm identification algorithms.
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7.1 Introduction

Since ε-BAI for linear bandits is the focus of Part III, we recall the problemdescribed in Chapter 1.
In the linear bandit problem, each arm i ∈ [K] is associatedwith a known context vector ai ∈ Rd

and has a mean which is a linear function of unknown regression parameter θ ∈ M where
M ⊆ Rd is a bounded set, i.e. µi = ⟨ai, θ⟩ . In the transductive setting [Fiez et al., 2019], each
answer j ∈ [Z] is associated with a known context vector zj ∈ Rd and the mean is also linear,
i.e. µj = ⟨zj , θ⟩ . Taking Z = A recover the linear bandits setting. We assume that A spans
Rd and by denote LA (resp. LZ and LM ) is the maximum ℓ2-norm of vectors in A (resp. Z
and M ), i.e. LX := maxx∈X ∥x∥2 where ∥ · ∥2 is the ℓ2-norm. Note that µ is fully characterized
by the regression parameter θ , the set of arms vector A = {ai}i∈[K] and the set of answers
vector Z = {zj}j∈[Z] . Moreover, we will use their context vectors to refer to arms a ∈ A and
answers z ∈ Z instead of using their integer indices. The focus of this chapter is to highlight a
phenomenon that is orthogonal to the class of distributions. Therefore, we restrict ourselves
to the set DNσ of Gaussian distributions with known variance and assume that σ2

a = 1 for all
a ∈ A by scaling, hence DK = DK

1 . Let ν ∈ DK with regression parameter θ ∈ M .
At time n , we denote by In ∈ A the next arm to pull and by ẑn the candidate answer.

Conditioned on In , the observation Xn,In satisfies that Xn,In ∼ N (⟨In, θ⟩, 1) . Recall that
the history is defined as the σ-algebra Fn := σ

(
U1, I1, X1,I1 , · · · , In−1, Xn−1,In−1 , Un

) , where
Un ∼ U([0, 1]) materializes the possible independent randomness used by the algorithm at
time n . However, in this chapter, we present a deterministic algorithm.

In the ε-BAI for transductive linear bandits, the agent aims at identifying an answer whose
mean is ε-close to the highest one, i.e. z ∈ Zε(θ) := {z ∈ Z | ⟨θ, z⟩ ≥ maxz∈Z⟨θ, z⟩ − ε}
where ε ≥ 0 . In the multiplicative ε-BAI problem, the means are non-negative and one
aims at returning an answer z ∈ Zmul

ε (θ) := {z ∈ Z | ⟨θ, z⟩ ≥ (1 − ε) maxz∈Z⟨θ, z⟩} where
ε ∈ [0, 1) . The set of greedy answers is defined as the set of answers with the highest mean,
i.e. z⋆(θ) := arg maxz∈Z⟨θ, z⟩ . While most of our contributions (and statements) will hold
for both the additive and the multiplicative settings, we note that the additive ε-BAI has
received more scrutiny [Garivier and Kaufmann, 2021, Kocák and Garivier, 2021]. Taking
ε = 0 recovers the BAI problem, in which there is a unique correct answer. As we extensively
mentioned in previous chapters, ε-BAI is seen as a more practical objective than BAI in cases
where getting an answer close to optimal is enough. While a BAI algorithm will spend many
samples distinguishing between the answer with the highest mean and an ε-close one, an ε-BAI
algorithm will be able to stop quickly.

We consider the fixed-confidence setting (see Section 1.4). Let δ ∈ (0, 1) be given to the
agent, and τε,δ denote the stopping time. A strategy is said to be (ε, δ)-PAC if, for all ν ∈ DK

with regression parameter θ ∈ M , Pν

(
τε,δ < +∞, ẑτε,δ

/∈ Zε(θ)
)

≤ δ . Among the class of
(ε, δ)-PAC algorithms, our goal is to minimize the expected sample complexity Eν [τε,δ] .
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Contribution 7.1. The contributions of Chapter 7 are the following.

• We provide an analysis of ε-BAI for transductive linear bandits and highlight a phenomenon
that was overlooked by previous work. The choice of the candidate answer is crucial to reach
asymptotic optimality in terms of expected sample complexity: one should identify the easiest-
to-verify (or furthest) answer instead of using the greedy answers.

• By carefully choosing the candidate answer and leaving the sampling rule unchanged, we de-
velop a simple procedure to adapt BAI algorithms to be (ε, δ)-PAC and empirically competitive
for ε-BAI in transductive linear stochastic bandits.

• By leveraging the concept of the easiest-to-verify answer in the sampling rule, we propose an
asymptotically optimal algorithm that has competitive empirical performance.

7.2 Comparing Correct Answers

7.2.1 Lower Bound

For any w ∈ (R+)K , we define the design matrix Vw :=
∑

a∈Awaaa
T ∈ Rd×d , which is

symmetric and positive semi-definite, and definite if and only if Span({a ∈ A | wa ̸= 0}) = Rd .
For any symmetric positive semi-definite matrix V ∈ Rd×d , we define the semi-norm ∥x∥V :=√
xTV x for x ∈ Rd , which is a norm if V is positive definite.

Alternative set Given an answer z ∈ Z , the alternative to z is defined as the set of parameters
λ ∈ M for which z is not a correct answer for λ , i.e. ¬εz = {λ ∈ M | ⟨λ, z⟩ < maxz∈Z⟨λ, z⟩ − ε}
. For multiplicative ε-BAI, we have ¬mul

ε z = {λ ∈ M | ⟨λ, z⟩ < (1 − ε) maxz∈Z⟨λ, z⟩} .

Asymptotic lower bound Lemma 7.1 gives an asymptotic lower bound on the expected
sample complexity of any (ε, δ)-PAC strategy for both additive and multiplicative ε-BAI. This is
a corollary of Theorem 1 in Degenne and Koolen [2019], which holds for any multiple answer
instance and σ-sub-Gaussian distributions.

Lemma 7.1 (Theorem 1 in Degenne and Koolen [2019]). Let δ ∈ (0, 1) and ε ∈
R . For all (ε, δ)-PAC strategy, for all ν ∈ DK with regression parameter θ ∈ M ,
lim infδ→0 Eν [τε,δ]/ log(1/δ) ≥ Tε(ν) with Tε(ν) = minz∈Zε(θ) Tε(ν, z) and Tε(ν, z)−1 :=
maxw∈ΣK

infλ∈¬εz
1
2∥θ − λ∥2

Vw
.
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An (ε, δ)-PAC algorithm is said to be asymptotically optimal if the bound is tight: for all
ν ∈ DK with regression parameter θ ∈ M , lim supδ→0 Eν [τε,δ]/ log(1/δ) ≤ Tε(ν) . We refer the
reader to Section 1.4.1 for more details on lower bounds on the expected sample complexity.

As noted by Chernoff [1959], the complexity Tε(ν)−1 is the value of a zero-sum game
between two players. The agent chooses a correct answer and a pulling proportion over arms,
(z, w) ∈ Zε(θ) × ΣK . The nature plays the most confusing alternative λ ∈ ¬εz for a reweighted
Kullback-Leibler divergence ( ∥ · ∥2

Vw
for Gaussian) to fool the agent into rejecting this answer.

Our algorithm, named LεBAI (Linear ε-BAI), is based on this formulation. Even for known θ ,
computing Tε(ν)−1 is in general intractable due to the non-convexity of ¬εz and the additional
maximization over Zε(θ) . When ε is large enough to have Zε(θ) = Z for all θ ∈ M , then
Tε(ν) = 0 , i.e. it is so easy that no sample is needed.

Since Tε(ν) ≤ T0(ν) for all ν ∈ DK such that θ ∈ M (because ¬εz ⊆ ¬0z ), ε-BAI is easier
than BAI. There exist arbitrarily hard BAI instances that can be solved if seen as an ε-BAI
problem, e.g.when the gap between the best and the second best arm is arbitrarily small.

7.2.2 Easiest-To-Verify Answer

The contributions in this chapter are linked with the concept of easiest-to-verify (or furthest)
answers: it should be leveraged in the recommendation-stopping pair (see Section 7.3) and in
the sampling rule (see Section 7.4). In a nutshell, to reach asymptotic optimality in terms of
sample complexity one should identify the unique easiest-to-verify answer instead of simply
using the greedy answers: all correct answers are not equivalent.

The set zF (ν) of the easiest-to-verify (or furthest) answers is defined as the answers which
maximize the dissimilarity involved in the definition Tε(ν)−1 , when using an optimal allocation
over armswF (ν) ∈ ΣK . Introduced in Degenne and Koolen [2019] andGarivier and Kaufmann
[2021], it is defined as

(zF (ν), wF (ν)) := arg max
(z,w)∈Zε(θ)×ΣK

inf
λ∈¬εz

1
2∥θ − λ∥2

Vw
. (7.1)

Both zF (ν) and z⋆(θ) are subsets of Zε(θ) , however they might differ. In BAI with a unique
best arm, the set Zε(θ) is a singleton, hence those two notions coincide.

We assume there is a unique easiest-to-verify answer for the unknown θ , i.e. |zF (ν)| = 1
. When |zF (ν)| > 1 , some function of θ has to have the same value for all answers of the set.
This happens with probability 0 if θ arises from an absolutely continuous distribution. Almost
all BAI algorithms make the assumption that |z⋆(θ)| = 1 , which implies |zF (ν)| = 1 in the BAI
case. Since the easiest-to-verify answer is assumed unique, we abuse notation and denote by
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zF (ν) that answer and the singleton containing it as in (7.1). z⋆(θ) denotes a set as we do not
assume that |z⋆(θ)| = 1 . The dependence of zF (ν) and wF (ν) on ε is omitted.

Asymptotic sub-optimality of z⋆(θ) An (ε, δ)-PAC strategy is said to be asymptotically greedy
if the only correct answers for which the algorithm will stop asymptotically are the greedy
answers z⋆(θ) , i.e. for all ν ∈ DK with regression parameter θ ∈ M ,

lim
δ→0

Pν

(
τε,δ < +∞, ẑτε,δ

∈ Zε(θ) \ z⋆(θ)
)

= 0 . (7.2)

Lemma 7.2 shows that any asymptotically greedy (ε, δ)-PAC strategy is asymptotically
sub-optimal whenever zF (ν) /∈ z⋆(θ) , i.e. it can only reach Tg,ε(ν) which is strictly higher than
Tε(ν) . The proof of Lemma 7.2 is detailed in Appendix G.1.

Lemma 7.2. For all asymptotically greedy (ε, δ)-PAC strategy, for all ν ∈ DK such that θ ∈ M ,

lim inf
δ→0

Eν [τε,δ]
log(1/δ) ≥ Tg,ε(ν) with Tε(ν) = min

z∈z⋆(θ)
Tε(ν, z) ,

where Tg,ε(ν) > Tε(ν) if and only if zF (ν) /∈ z⋆(θ) .

Lemma 7.3 shows that any (ε, δ)-PAC strategy recommending any greedy answers ẑτε,δ
∈

z⋆(θτε,δ
) which succeeds in identifying z⋆(θ) is asymptotically greedy. Since θ 7→ z⋆(θ) is

continuous and Z is finite, it is sufficient to have a sampling rule ensuring that limn→+∞ θn = θ

.

Lemma 7.3. Any (ε, δ)-PAC strategy recommending ẑτε,δ
∈ z⋆(θτε,δ

) is asymptotically greedy if
the sampling rule ensures that limδ→0 Pν(τε,δ < +∞, z⋆(θτε,δ

) = z⋆(θ)) = 1 .

Asymptotic optimality of zF (ν) The easiest-to-verify answer has a central role in the char-
acteristic time. Among the oracles that first choose an answer z ∈ Zε(θ) and then sample
according to the optimal proportions to verify that θ /∈ ¬εz , the only one achieving asymptotic
optimality is the one picking zF (ν) . To be asymptotically optimal, an ε-BAI algorithm has to
implicitly identify zF (ν) .

The definition of zF (ν) comes from an asymptotic lower bound, and no finite time lower
bounds are available for ε-BAI. It could be that for larger δ (hence small stopping times),
identifying zF (ν) among Zε(θ) is too costly to be done before stopping. In that regime, it could
be that an algorithm cannot do better than picking any ε-optimal answer. Strong moderate
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Figure 7.1 – Influence of ε on (left) the proportion of draws where zF (ν) /∈ z⋆(θ) , (right) the median
(and first/third quartile) of (top) Tε(ν)/Tg,ε(ν) and (bottom) Tmul

ε (ν)/Tmul
g,ε (ν) , when zF (ν) /∈ z⋆(θ) .

confidence terms (independent of δ ) affecting the sample complexity have been shown in
different settings [Katz-Samuels and Jamieson, 2020, Mason et al., 2020].

Numerical simulations We compare the easiest-to-verify and the greedy answers for additive
and multiplicative ε-BAI. We consider d = 2 , M = R2 and Z = A with K = 4 . We use
θ = (1, 0) and generate 25000 random instances. In each one of them, we consider z1 = θ and
draw uniformly at random z2 ∈ {(cos(ϕ), sin(ϕ)) | ϕ ∈ [−ϕε, ϕε]} and z3, z4 ∈ {(cos(ϕ), sin(ϕ)) |
ϕ ∈ (−π,−ϕε) ∪ (ϕε, π]} , where ϕε := arccos(1 − ε) . This yields z1 = z⋆(θ) , z2 ∈ Zε(θ) and
z3, z4 ∈ Z \ Zε(θ) . To approximate (Tε(ν), zF (ν)) , we discretize △4 with 10000 vectors. This is
repeated for several values of ε . We never observed |z⋆(θ)| > 1 or |zF (ν)| > 1 . For a specific
hard instance such that z⋆(θ) ̸= zF (ν), we refer to Figure 7.2(b).

Figure 7.1 reveals that the proportion of draws where z⋆(θ) ̸= zF (ν) is not negligible. On
those instances, Figure 7.1(b) shows that Tε(ν)/Tg,ε(ν) and Tmul

ε (ν)/Tmul
g,ε (ν) is on average 0.95

and 0.9 . Therefore, when they are different, the easiest-to-verify answer has a 5% and 10%
lower characteristic time than greedy answers.
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7.3 From BAI to ε-BAI Algorithms

We propose a simple procedure to convert any BAI algorithm into an (ε, δ)-PAC algorithm.
While leaving the original sampling rule unchanged, the stopping-recommendation rule is
carefully chosen thanks to the concept of the easiest-to-verify answer.

Structure Since ε-BAI is easier than BAI, the stopping rule of BAI algorithms has to bemodified
for ε-BAI. Instead of stopping whenever a single best arm is identified, it is enough to stop
when we know that an answer is ε-close to the ones with the highest mean. In most ( ε-)BAI
algorithms, the stopping-recommendation pair, and the sampling rule can be thought of as two
independent blocks. There exist stopping/recommendation pairs that guarantee the strategy
to be (ε, δ)-PAC regardless of the sampling rule (e.g. see Lemma 7.4). Therefore, we can take
the sampling rule from a BAI algorithm and couple it with a stopping/recommendation pair
with this property.

We will now describe such a stopping-recommendation pair for ε-BAI in transductive
linear Gaussian bandits. Due to its generality, this procedure can be adapted to tackle general
distributions (e.g. σ-sub-Gaussian) and different structures (e.g. spectral bandits) by simply
adapting the stopping rule and its associated threshold.

7.3.1 Recommendation and Stopping Rules

Estimator Let Nn be the empirical allocation before time n , i.e.Nn,a =
∑

t∈[n−1] 1 (It = a) .
We denote the Ordinary Least Square (OLS) estimator by θn = V −1

Nn

∑
t∈[n−1]Xt,ItIt . When

θn ∈ M , this is also the Maximum Likelihood Estimator (MLE). We denote by νn a bandit
instance with regression parameter θn .

GLR stopping rule As detailed in Section 1.4.2, we adopt the GLR stopping rule. Given a
candidate answer ẑn ∈ Zε(θn) , the algorithm stops as soon as

inf
λ∈¬εẑn

∥θn − λ∥2
VNn

> 2c(n− 1, δ) . (7.3)

Computing infλ∈¬εẑn ∥θn − λ∥2
VNn

= minx ̸=ẑn Cε(ẑn, x; νn, Nn) can be done with Z − 1 calls
to the oracle computing the empirical transportation cost Cε(ẑn, x; νn, Nn) . When M = Rd

, the transportation cost has a closed-form formula, see e.g. Section 8.1 of Chapter 8. When
M =

{
θ ∈ Rd | |z⋆(θ)| = 1, ∥θ∥ ≤ LM

}
, Degenne et al. [2020a] showed that C0(z, x; ν, w) can

be computed numerically as a univariate optimization problem.
In Lemma 7.4, we show that combining a recommendation rule such that ẑn ∈ Zε(θn) and

this stopping rule is sufficient to obtain a (ε, δ)-PAC strategy regardless of the sampling rule.
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This holds even when the stopping criterion is checked only on an infinite subset of N . The
proof leverages the concentration inequalities of Kaufmann and Koolen [2021].

Lemma 7.4. Let T ⊆ N with |T | = ∞ . Given any sampling and recommendation rule such that
ẑn ∈ Zε(θn) for all n ∈ T , then evaluating the stopping criterion (7.3) at each time n ∈ T with
the threshold

c(n, δ) = 2K log (4 + log (n/K)) +KCG (log (1/δ) /K) (7.4)

yields an (ε, δ)-PAC strategy for linear Gaussian distributions with unit variance and regression
parameter in M . The function CG is defined in (B.1). It satisfies CG(x) ≈ x+ log(x) .

Proof. The proof is the same as the one detailed in Appendix B.1. ■

Since this result holds for any sampling and recommendation rules satisfying one mild
requirement, ẑn ∈ Zε(θn) for all n ∈ T , this leaves open the question on how to design those
two rules to stop as early as possible. Algorithms that are agnostic to the choice of the candidate
answer might have a higher expected sample complexity than the ones aiming at identifying
the easiest-to-verify answer.

Recommendation rule Taking a greedy answer ẑn ∈ z⋆(θn) is a direct choice. Thanks to its
efficient implementation, using a greedy answer is the only computationally feasible recommen-
dation rule for combinatorial or continuous answer sets. Unfortunately, when zF (ν) /∈ z⋆(θ)
, this approach leads to sub-optimal algorithms in terms of asymptotic sample complexity
(Lemmas 7.2 and 7.3).

When Z is not too large or when we disregard the computational cost, a more careful choice
than the greedy one alleviates this sub-optimality. The set of correct answers for which the
GLR (l.h.s. of (7.3)) is maximized are the instantaneous easiest-to-verify answers (or instantaneous
furthest)

zF (νn, Nn) := arg max
z∈Zε(θn)

inf
λ∈¬εz

∥θn − λ∥2
VNn

. (7.5)

By definition, zF (νn, Nn) is the set of answers for which we have the most evidence that they
are correct at time n . Solving (7.5) can be done with |Zε(θn)| calls to the oracle computing
infλ∈¬εz ∥θn − λ∥2

VNn
, whose computational cost is discussed above. At a lower computational

cost than using an easiest-to-verify answer for the current estimator ẑn ∈ zF (νn) , we will
see that using an instantaneous easiest-to-verify answer enjoys similar empirical performance
(sample complexity). For all the above sets of candidate answers, the ties are broken arbitrarily.
Empirically, we only observed singletons.
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Dependence inK In linear bandits, whenK is large, dependencies inK can be replaced by
d [Lattimore and Szepesvari, 2020]. The focus of this chapter is to highlight the importance
of carefully choosing answers, and havingK instead of d is a price we are willing to pay for
simpler arguments. Prior works removed the K dependency in the analysis of game-based
algorithms [Degenne et al., 2020a, Tirinzoni et al., 2020, Réda et al., 2021].

7.3.2 Modified BAI Algorithms

Modification procedure Given any BAI algorithm for transductive linear Gaussian bandits,
we modify it to use (7.3) as a stopping rule while leaving the sampling rule unchanged. By
Lemma 7.4, the resulting algorithm is an (ε, δ)-PAC strategy. For the recommendation rule,
theory (Lemmas 7.2-7.3) and experiments (Figure 7.2) both suggest to use ẑn ∈ zF (νn, Nn)
instead of ẑn ∈ z⋆(θn) . We do not prove any theoretical guarantees on the sample complexity
of the modified algorithms since such results depend heavily on each sampling rule.

BAI benchmarks Lots of algorithms have been designed to tackle the BAI setting. Wemention
below the ones used in the experiments as benchmarks. Soare et al. [2014] proposed a static
allocation design X Y-Static and its elimination-based improvement X Y-Adaptive, which are
linked to aG-optimal design. In Xu et al. [2018], LinGapE was introduced as the first gap-based
BAI algorithm. All the above BAI algorithms are not shown to be asymptotically optimal and
depend on δ (except X Y-Static). Algorithms such as DKM [Degenne et al., 2019] and LinGame
[Degenne et al., 2020a] are asymptotically optimal, and their sampling rule does not depend
on δ .

Other stopping rules For all BAI algorithms using a GLR stopping rule, the stopping con-
dition (7.3) is a natural extension. Some other stopping rules (not based on the GLR) have a
direct extension to ε-BAI. This is the case for the gap-based stopping rule for additive ε-BAI
employed by LinGapE, where we can stop when the gap is smaller than ε instead of stopping
when it is negative.

7.3.3 Experiments

We perform experiments to highlight the empirical performance of themodified BAI algorithms
on additive ε-BAI problems. Moreover, we show that using ẑn ∈ zF (νn, Nn) in (7.3) achieves
lower empirical stopping time compared to ẑn ∈ z⋆(θn) , and outperforms the ε-gap stopping
rule with ẑn ∈ z⋆(θn) . We consider linear bandits ( A = Z ), M = Rd and (ε, δ) = (0.05, 0.01) ,
and perform 5000 runs. The stopping-recommendation pair is updated at each time n .

155



Choosing the Easiest-To-Verify Answer

Figure 7.2 – Empirical stopping time of the modified BAI algorithms with ẑn ∈ zF (νn, Nn) on the hard
instance displayed on the right (star is mean). “-G” denotes ẑn ∈ z⋆(θn) . “-O” denotes the ε-gap
stopping rule for ẑn ∈ z⋆(θn) .

Hard instances We adapt the usual hard instance studied in BAI for linear bandits to enforce
that there are multiple correct answers and that the easiest-to-verify answer differs from the
greedy answer, i.e. |Zε(θ)| > 1 and z⋆(θ) ̸= zF (ν) . Taking θ = e1 with ei = (1 (j = i))j∈[d] , the
answers set is defined as Z = {e1, · · · , ed, ad+1, ad+2} where ad+1 = cos(ϕ1)e1 + sin(ϕ1)e2 ∈
Zε(θ) and ad+2 = cos(ϕ2)e1 + sin(ϕ2)e2 /∈ Zε(θ) . Considering d = 2 , we use ϕ1 = rεϕε and
ϕ2 = (1 + rε)ϕε with ϕε = arccos(1 − ε) and rε = 0.1 , as displayed in Figure 7.2(b).

In this instance, the BAI algorithms without modification require in average 545 times more
samples than compared to their modified version. The discrepancy is particularly striking since
the hard instance for ε-BAI is even harder for BAI.

Figure 7.2(a) reveals that, for all modified BAI, considering an instantaneous easiest-to-
verify answer instead of a greedy answer leads to lower empirical stopping time. Their ratio
is 0.92 on average. This matches the asymptotic observations when computing Tε(ν)/Tg,ε(ν)
for additive ε-BAI (as done in Figure 7.1 for multiplicative ε-BAI, see Jourdan and Degenne
[2022]). The modified LinGapE using ẑn ∈ zF (νn, Nn) outperforms the ε-gap extension of the
original stopping rule, which is equivalent to using (7.3) with ẑn ∈ z⋆(θn) . While guided by
the asymptotic regime, using zF (νn, Nn) instead of z⋆(θn) for the stopping-recommendation
pair has practical utility in the moderate confidence regime with a 10% speed-up in terms of
sample complexity.

7.4 LεBAI Algorithm

Leveraging the concept of the easiest-to-verify answer in the sampling rule, we present LεBAI
(Linear ε-BAI), an asymptotically optimal algorithm for (ε, δ)-PAC best-answer identification
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7.4 LεBAI Algorithm

1 Input: Learner LA and Z-oracle LZ .
2 Pull once each arm a ∈ A , set n0 = K andWn0+1 = 1K ;
3 for n > n0 do
4 Get ẑn ∈ zF (µn, Nn) ; // Candidate answer
5 If infλ∈¬εẑn ∥θn − λ∥2

VNn
> 2c(n− 1, δ) then return ẑn ; // GLR stopping rule

6 Get
(
z̃n, w

LA
n

)
from LZ × LA ; // Learner plays

7 Set wn = 1
nK 1K +

(
1 − 1

n

)
wLA

n andWn+1 = Wn +wn ; // Forced exploration

8 Set λn ∈ arg minλ∈¬εz̃n
∥θn − λ∥2

Vwn
; // Closest alternative

9 Set Un,a =
(
∥θn − λn∥aaT + √

cn,a

)2 for all a ∈ A ; // Optimistic gains

10 Feed LA with gain gn(w) = (1 − 1
n)⟨w,Un⟩ ; // Update learner

11 Pull In ∈ arg mina∈A{Nn,a −Wn,a} , observe Xn,In and update (θn, Nn) ;
12 end for

Algorithm 7.1: LεBAI algorithm.

in transductive linear bandits. It deals with both the multiplicative and the additive ε-BAI
problems. Similarly to works on linear bandits [Abbasi-Yadkori et al., 2011, Soare et al., 2014],
we assume that the set of parameters is bounded, i.e. LM < +∞ .

Structure After pulling each arm once, at each round n > n0 , if the stopping condition (7.3)
for the candidate answer ẑn ∈ zF (θn, Nn) , we return ẑn ; else, the sampling rule returns an
arm In to pull. Then, the statistics are updated based on this new observation.

Sampling rule The algorithmic ingredients used in the sampling rule of LεBAI build upon
the ones in LinGame [Degenne et al., 2020a]. It is a saddle-point algorithm approximating a
two-player zero-sum game. At each round n > n0 , if the algorithm hasn’t stopped yet, the
agent chooses a candidate answer and a pulling proportion over arms

(
z̃n, w

LA
n

)
∈ Zε(θn) ×

ΣK , where z̃n can be different from ẑn . A mild logarithmic forced exploration is added,
i.e. wn = 1

nK 1K +
(
1 − 1

n

)
wLA

n . The agent will play by combining a no-regret learner on ΣK

(e.g.AdaHedge of de Rooij et al. [2014]), denoted by LA , and a Z-oracle, denoted by LZ .
While Theorem 7.5 was proven for z̃n ∈ zF (νn) , we obtain similar empirical performance with
the heuristic z̃n ∈ zF (νn, Nn) at a much lower computational cost.

Given (z̃n, wn) from LZ × LA , the nature plays the most confusing alternative parameter
λn ∈ arg minλ∈¬εz̃n

∥θn − λ∥2
Vwn

. To update LA , the agent uses gains gn(w) = (1 − 1
n)⟨w,Un⟩

where the optimistic gains are defined for all a ∈ A as Un,a =
(
∥θn − λn∥aaT + √

cn,a

)2 with
cn,a = min

{
2c
(
n2, n2/3

)
∥a∥2

V −1
Nn

, 4L2
ML2

A

}
. Under a good event, the quantity ⟨w,Un⟩ is an
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upper bound on the unknown infλ∈¬εzF (ν) ∥θ − λ∥2
Vw

. Finally, In is obtained deterministically
by tracking, i.e. In ∈ arg mina∈A{Nn,a − wn,a} .

To obtain efficient implementations for combinatorial or large arms setsK , LεBAI should
be modified by using existing improvements for game-based algorithms [Tirinzoni et al., 2020,
Réda et al., 2021, Jourdan et al., 2021]. When ε = 0 , LεBAI is close to LinGame but uses one
learner instead of Z learners. Other differences are that LinGame uses regularization in the
estimator and a stopping threshold featuring d .

7.4.1 Sample Complexity Upper Bound

For both the multiplicative and the additive ε-optimality, Theorem 7.5 shows that LεBAI yields
an (ε, δ)-PAC and asymptotically optimal algorithm. The proof sketch of Theorem 7.5 is inspired
by the one of LinGame [Degenne et al., 2020a], hence we will only highlight the novel technical
difficulties that had to be addressed.

Theorem 7.5. Let LA with sub-linear regret (e.g. AdaHedge) and LZ returning z̃n ∈ zF (νn) .
Using (7.4) as stopping threshold c(n, δ) , LεBAI yields an (ε, δ)-PAC algorithm which satisfies
that, for all ν ∈ DK such that θ ∈ M and |zF (ν)| = 1 , lim supδ→0 Eν [τε,δ] / log (1/δ) ≤ Tε(ν) .

Technical difficulties Since the proof of Theorem 7.5 is inspired by the one of LinGame
[Degenne et al., 2020a], we highlight the novel technical difficulties that had to be addressed.
In BAI, we have |z⋆(θ)| = 1 . The key property used in BAI proofs which does not hold in
ε-BAI is that, for all z ̸= z⋆(θ) , θ belongs to the alternative ¬0z . The consequence of this
is that whenever the answer used by the sampling rule z̃n is wrong, the correct parameter
belongs to ¬0z̃n , hence the algorithmwill sample to try and exclude that true parameter, which
cannot succeed and will at some point correct the mistake. In ε-BAI we can have z̃n ̸= zF (ν)
while having θ /∈ ¬εz̃n and there is a priori no such self-correction mechanism to enforce that
z̃n = zF (ν) after a while.

Our analysis reveals that a similar self-correction mechanism can be obtained for LεBAI.
Let ¬F z be the easiest-to-verify alternative (or furthest alternative) to z , i.e. the set of parameters
for which z is not the unique easiest-to-verify answer. Intuitively, as it uses z̃n ∈ zF (νn) , LεBAI
samples to asymptotically exclude ¬F z̃n . Leveraging the logarithmic forced exploration, this
cannot succeed when z̃n ̸= zF (ν) . Those two choices yield a self-correction mechanism for ε-
BAI. More formally, we show that, under a good concentration event, the event {z̃t ̸= zF (ν)}t∈[n]

only happens sub-linearly in n .
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Relatedwork Tackling ε-BAI inMAB for additive ε-optimality, ε-TaS [Garivier andKaufmann,
2021] recommends zF (νn, Nn) and uses the associated GLR as stopping rule. The sampling
rule computes wF (νn) and then tracks it with added forced exploration. Addressing additive
spectral bandits, SpectralTaS [Kocák and Garivier, 2021] recommends z⋆(θn) and uses the
GLRT associated with zF (νn, Nn) for the stopping rule. For the sampling rule, a mirror ascent
algorithm is run based on a super-gradient of a function depending on any ε-optimal answer.
While the choice of the answer is not discussed, it is our understanding that a greedy answer is
used (matching their candidate answer). When considering ε-BAI on the unit sphere, Jedra
and Proutiere [2020] recommend z⋆(θn) and use the associated GLRT, however, their sampling
rule is uniform over a spanner.

Designed for the multiple-correct answers setting, Sticky TaS [Degenne and Koolen, 2019]
is a modified TaS algorithm: at round n , they compute ⋃κ∈Cn

zF (κ) where Cn is a continuous
confidence region around νn , and stick to one of those (given an arbitrary order). For some
identification problems (e.g.GAI), it rewrites as computing a finite number of easiest-to-verify
answers. There is no such rewriting for ε-BAI, hence Sticky TaS is not computationally feasi-
ble. Experiments suggest that it performs on par with ε-TaS at a higher computational cost,
i.e. solving the same optimization for each parameter in a confidence region.

7.4.2 Proof Sketch of Theorem 7.5

The proof scheme sketched below is inspired by the game approach studied in Degenne et al.
[2020a]. First, we derive a non-asymptotic one, then take the limit δ → 0 . Having multiple
ε-optimal answers is a key difficulty in several arguments.

Let f(n) := 2c(n− 1, n1/s) with c(n, δ) as in (7.4) and s > 1 . Let

En :=
{

∀t ≤ n, ∥θt − θ∥2
VNt

≤ f(n)
}
. (7.6)

Using concentration arguments, we have∑n Pν(E∁
n) ≤ ζ(s) where ζ is the Riemann ζ function.

Using Lemma 2.25 in Chapter 2, the proof boils down to construct a time Tν(δ) > K such
that En ⊆ {τε,δ ≤ n} for n ≥ Tν(δ) since it yields that Eν [τε,δ] ≤ Tν(δ) + Kζ(s) . Then, a
sufficient condition to conclude the proof is to show that lim supδ→0 Tν(δ)/ log(1/δ) ≤ Tε(ν) .
To construct such a Tν(δ) , it is sufficient to show that under En , if the algorithm does not stop
at time n , then nTε(ν)−1 ≤ log (1/δ) + Õ

(
n1−β1 + log (1/δ)1−β2

)
where (β1, β2) ∈ (0, 1)2 .

The analysis distinguishes between two independent components. Under En , if the algo-
rithm does not stop at time n , we can show that the stopping-recommendation pair satisfy

2c(n− 1, δ) ≥ max
z∈Z

inf
λ∈¬εz

∥θ − λ∥2
VNn

− Õ
(
n1−β1 + log (1/δ)1−β2

)
. (7.7)
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The r.h.s. only features the empirical counts, and the proof is independent of the sampling rule
itself. Then, it is possible to show that the sampling rule satisfy

max
z∈Z

inf
λ∈¬εz

∥θ − λ∥2
VNn

≥ 2nTε(ν)−1 − Õ
(
n1−β1 + log (1/δ)1−β2

)
. (7.8)

Due to the similarity with existing proof techniques [Degenne et al., 2020a] and the fact that
the Top Two approach is the main focus of this manuscript, the proofs of (7.7) and (7.8) are
omitted. For more details, we refer the reader to Lemma E.5 in Appendix E.2 [Jourdan and
Degenne, 2022] for (7.7) and to Lemmas E.6 and E.7 in Appendix E.3 for (7.8).

7.5 Experiments

We show that LεBAI has competitive empirical performance compared to existing ε-BAI algo-
rithms, which are computationally expensive, and that using an instantaneous easiest-to-verify
answer is efficient both in terms of computational cost and sample complexity. Moreover, LεBAI
performs on par with the modified BAI algorithms, which are not asymptotically optimal, on
hard and random instances.

As heuristic with lower computational cost (not supported by Theorem 7.5), the Z-oracle in
LεBAI returns an instantaneous easiest-to-verify answer, i.e. z̃n ∈ zF (θn, Nn) . The experiments
below are considering the multiplicative ε-optimality. Similar experiments can be done in
the additive setting (see Jourdan and Degenne [2022]). We use the same experimental setup
as in Section 7.3.3. On the 5000 runs, we report the standard deviation of means by using
sub-samples of 100 runs.

ε-BAI and candidate answer EvenwhenK is small, algorithms based on solving the optimiza-
tion problem (zF (ν), wF (ν)) are intractable, i.e. ε-TaS or recommending the easiest-to-verify
answer. We evaluate their performance empirically on the hard instance with A = {e1, e2} ,
and discretize uniformly ∆2 with 500 vectors.

Table 7.1 – Empirical stopping time ( ± standard deviation) on the hard instance with A = {e1, e2} .

z⋆(θn) zF (νn) zF (νn, Nn)

LεBAI 416 (±13) 383 (±16) 381 (±17)
ε-TaS 400 (±14) 371 (±15) 371 (±15)
Fixed 401 (±14) 374 (±14) 374 (±14)

Uniform 492 (±16) 450 (±17) 449 (±17)
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Figure 7.3 – Empirical stopping time on the hard instance with A = Z . The modified BAI algorithms
use (7.3) with ẑn ∈ zF (νn, Nn) .

In Table 7.1, we combine and compare four ε-BAI sampling rules with three candidate
answers for the stopping rule (7.3). Comparing the rows of Table 7.1 reveals that LεBAI
performs on par with ε-TaS and the “oracle” fixed algorithm, which tracks the unknown optimal
allocation wF (ν) . It also consistently outperforms uniform sampling ( ≈ 85% ).

Based on Table 7.1, a greedy answer is consistently worse than a (instantaneous) easiest-to-
verify answer, with a ratio of stopping time being on average 0.92 (coherent with Figure 7.1(b)).
Moreover, it highlights that using an instantaneous easiest-to-verify answer achieves similar
performance as an easiest-to-verify answer at a lower computational cost. In the following
experiments, the stopping-recommendation pair is (7.3) combined with ẑn ∈ zF (νn, Nn) .

Modified BAI algorithms Figure 7.3 compares LεBAI with the modified BAI algorithms,
all using the same stopping-recommendation pair. We see that LεBAI slightly outperforms
the modified LinGapE and X Y-Adaptive, performs better than the modified LinGame and
X Y-Static and is on par with the “oracle” fixed algorithm. Uniform sampling and the modified
DKM perform poorly.

Random instances To assess the impact of higher dimensions, random instances are con-
sidered (one per run). For the answer set, 19 vectors (ak)k∈[19] are uniformly drawn from
Sd−1 :=

{
a ∈ Rd : ∥a∥2 = 1

}
and set θ = a1 . To enforce havingmultiple correct answers, amod-

ification of the greedy answer is added such that a20,i = a1,i for i ̸= i0 and a20,i0 =
1−∥θ∥2

2+µ2
i0

−rεε

θi0
where i0 = arg mini∈[d] θi and rε = 0.1 . Those instances are motivated by a practical BAI ex-
ample where a modified/corrupted version of the unique correct answer exists. Seeing the
problem as an ε-BAI one allows to return an ε-optimal answer while avoiding wasteful queries
required by BAI algorithms.
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Choosing the Easiest-To-Verify Answer

Figure 7.4 – Empirical stopping time on random instances ( A = Z ) for d ∈ {6, 12} (from top left to
bottom right). The modified BAI algorithms use (7.3) with ẑn ∈ zF (νn, Nn) .

In Figure 7.4, LεBAI shows similar empirical performance with modified BAI algorithms.
Even though it is outperformed by the modified LinGapE, LεBAI is almost twice as fast as the
modified X Y-Adaptive and appears to be slightly more robust than the modified LinGame to
increasing dimension.

7.6 Discussion

In Chapter 7, we showed that the choice of the candidate answer is important for the sample
complexity in fixed-confidence ε-BAI. Using an instantaneous easiest-to-verify answer as a
candidate answer, we proposed a simple procedure to adapt existing BAI algorithms for ε-BAI
problems. Leveraging it in the sampling rule, we introduced LεBAI that is asymptotically
optimal and has competitive empirical performance.

Computing the easiest-to-verify answer requires solving the closest alternative sub-problem
|Zε(θn)| times. While that number is small (in particular much less than Z ) in the examples
we considered, that computation can become an issue if many different answers are close. If
we extend the setting to continuous answers, the computation of the easiest-to-verify answer
by iterating becomes unfeasible. Finding an ε-close point of a reward function in a non-finite
set is the general question of optimization, which is central to many areas of machine learning.
Extending the problem-dependent approach of the bandit framework to that setting is an
interesting research direction.

Since the existence of a tight finite-time lower bound for multiple-correct answer setting
is still an open problem, it remains unclear how to assess the theoretical performance of
algorithms in this regime. Once derived, this lower bound would reveal the existence of
moderate confidence terms (independent of δ ) affecting the sample complexity, which could
then be used to design ε-BAI algorithms with theoretical guarantees in both regimes.

162



7.6 Discussion

The approach of adapting the transportation costs to tackle the underlying structure in linear
bandits is successful, as it was for general class for distributions (see Part I) or for problemswith
multiple correct answers (see Part II). While most of the algorithms presented in this thesis are
inspired by the Top Two approach, we built upon the game approach in Chapter 7. Compared
to the Track-and-Stop approach, the game-based approach is less computationally expensive.
However, it is still more costly than the Top Two approach, which is easier to implement and
interpret. Understanding how to adapt the Top Two approach for linear bandits is the topic of
Chapter 8.
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Chapter 8

Extending the Top Two Approach

In Chapter 8, we also study the ε-BAI problem for linear bandit in the fixed-confidence
setting, as done in Chapter 7. The presented results are currently unpublished since the
challenges of the theoretical analysis have not been solved yet.

Given the recent success of the Top Two approach for the vanilla ε-BAI problem, it is
natural to wonder whether this approach extends to linear bandits. The transductive setting is
particularly relevant to understanding the different roles played by the arms and the answers.
The arms should be pulled to verify that an answer is better than another one. Therefore, the
Top Two algorithms should be seen as defining a candidate answer and the associated most
confusing alternative answer (i.e.which challenges the most our current belief) and collecting
additional observations to compare those top two answers. We propose LεTT that extends
the Top Two approach to tackle ε-BAI for transductive linear bandits. Before performing an
empirical study showcasing the good empirical performance of the resulting algorithms, we
highlight the challenges in the analysis of the expected sample complexity.
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Extending the Top Two Approach

8.1 Introduction

We consider the same setting as in Chapter 7. We refer the reader to Section 7.1 for a detailed
problem statement and to Sections 7.2 and 7.3 for additional notation. The unknown regression
parameter is denoted by θ ∈ Rd , the finite set of known arms A ⊂ Rd and known answers
Z ⊂ Rd . Let Zε(θ) = {z ∈ Z | ⟨θ, z⟩ ≥ maxz∈Z⟨θ, z⟩ − ε} be the set of ε-good answers for ε ≥ 0
. For multiplicative ε-BAI, the means are non-negative and ε ∈ [0, 1) and Zmul

ε (θ) = {z ∈ Z |
⟨θ, z⟩ ≥ (1 − ε) maxz∈Z⟨θ, z⟩} .

Characteristic times When M = Rd , the inverse of the characteristic times can be written as

Tε(ν, z)−1 = max
w∈ΣK

min
x∈Z\{z}

Cε(z, x; ν, w) and Tmul
ε (ν, z)−1 = max

w∈ΣK

min
x∈Z\{z}

Cmul
ε (z, x; ν, w) ,

(8.1)

with the transportation costs between (z, x) with allocation w ∈ ΣK on instance ν are

Cε(z, x; ν, w) = (ε+ ⟨θ, z − x⟩)2

2∥z − x∥2
V †

w

1 (ε+ ⟨θ, z − x⟩ > 0) ,

Cmul
ε (z, x; ν, w) = ⟨θ, z − (1 − ε)x⟩2

2∥z − (1 − ε)x∥2
V †

w

1 (⟨θ, z − (1 − ε)x⟩ > 0) ,

where Vw =
∑

a∈Awaaa
T and V † denotes the Moore-Penrose pseudo-inverse of V .

GLR stopping rules Let νn denotes a bandit instance with regression parameter θn =
V −1

Nn

∑
t∈[n−1]Xt,ItIt where Nn,a =

∑
t∈[n−1] 1 (It = a) . The empirical transportation costs

are defined as

Wε,n(z, x) = Cε(z, x; νn, Nn) and Wmul
ε,n (z, x) = Cmul

ε (z, x; νn, Nn) .

Using the instantaneous easiest-to-verify answer, the GLRε stopping rule can be written as

τε,δ = inf
{
n | max

z∈Zε(θn)
min

x∈Z\{z}
Wε,n(z, x) > c(n− 1, δ)

}
, (8.2)

and a similar formula would give τmul
ε,δ for multiplicative ε-BAI. The threshold function c(n, δ)

can be chosen as in (7.4) to ensure that the algorithm is (ε, δ)-PAC regardless of the sampling
rule (see Lemma 7.4 in Chapter 7).

166



8.2 Linear Top Two Algorithm

Contribution 8.1. The contributions of Chapter 8 are the following.

• We extend the Top Two approach to tackle structured bandits by proposing the Structured
Top Two approach, which is specified by four choices (leader answer, challenger answer, target
allocation and mechanism to reach it). We propose several instances for ε-BAI in transductive
linear bandits with Gaussian distributions, including LεTT which generalizes the EB-TCε

algorithm studied in Chapter 5.

• We highlight the challenges in the analysis of the expected sample complexity to obtain the
asymptotic optimality of LεTT. When there is no randomness in the collected observations,
LεTT can be written as a saddle-point algorithm to solve Tε(ν)−1 . While the analysis is still
an open problem, this draws a connection between the Structured Top Two approach and the
game-based approach.

• Our empirical study showcases the competitive empirical performance of LεTT.

8.2 Linear Top Two Algorithm

As summarized inAlgorithm2.1, a TopTwo sampling rule is defined by four components: leader
answer, challenger answer, target allocation, and mechanism to reach it. Extending the Top
Two algorithms to tackle structured bandits such as transductive linear bandits requires some
modification. While we still want to verify that the leader answer is better than the challenger
answer, we cannot simply define a target allocation (β̃n(Bn, Cn), 1− β̃n(Bn, Cn)) ∈ [0, 1]2 for the
leader/challenger pair (Bn, Cn) : (1) sampling any arm will reveal information on the vector θ
and (2) an answer might not be an arm that can be pulled. Therefore, given a leader/challenger
pair, we need to define a target allocation that might be supported on the whole set of arms A ,
i.e. βn(Bn, Cn) ∈ ΣK . While we focus on ε-BAI in transductive linear bandits, it is possible to
propose a Structured Top Two sampling rule in general, which is summarized in Algorithm 8.1.

As done in Chapter 7, we initialize by sampling each arm once, even though a smarter
initialization is possible for linear bandits (e.g. sample a set of arms that covers Rd ). While we
present the details for the additive setting, the formulas can straightforwardly be adapted to
tackle the multiplicative setting.

Naming convention As in Section 2.2.5, we use {leader}-{challenger}-{target} as naming
convention. Recall that the mechanism to reach the target allocation (Section 8.2.2) is defined
by the first three choices: using tracking if the leader/challenger pair is deterministic and
randomization otherwise. Note that the formulas for those four choices explicitly depend on
the considered structured bandits.
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Extending the Top Two Approach

1 Input: Mechanisms to choose the leader answer LB , the challenger answer LC ,
the target allocation LT and how to reach the target LR .

2 Output: Next arm to sample In .
3 Get Bn ∈ Z from LB ; // Leader answer
4 Get Cn ∈ Z \ {Bn} from LC ; // Challenger answer
5 Get βn(Bn, Cn) ∈ ΣK from LT ; // Target allocation
6 Get In ∈ A from LR using βn(Bn, Cn) ; // Reaching the target

Algorithm 8.1: Structured Top Two sampling rule.

Leader answer In Section 2.2.1, we presented several choices of leader answer which can be
straightforwardly adapted to identify i⋆(θ) . The EB leader selects BEB

n ∈ arg maxz∈Z⟨θn, z⟩ .
The UCB leader answer uses BUCB

n ∈ arg maxz∈Z Un,z with

Un,z = ⟨θn, z⟩ +
√
g(n)∥z∥V −1

n
,

where g(n) = Θ(logn) . Given a sampler Πn on Rd , the TS leader answer chooses BTS
n ∈ i⋆(λn)

with λn ∼ Πn . For Gaussian distributions with unit variance, using the improper prior
Π1 = N (0d,+∞Id) yields Πn = N (θn, V

−1
Nn

) as posterior distribution before time n .
However, Chapter 7 advocates that one should identify the easiest-to-verify (or furthest)

answer zF (ν) defined in (7.1) instead of the greedy answer z⋆(θ) = arg maxz∈Z⟨θ, z⟩ , which is
doomed to be a sub-optimal choice when zF (ν) ̸= z⋆(θ) . Therefore, we should not use the EB,
UCB, or TS leaders when the goal is to achieve asymptotic optimality. Inspired by Chapter 7,
we could use the Fε (Furthest) leader answer, meaningBFε

n ∈ zF (νn) , or the IFε (Instantaneous
Furthest) leader answer, defined as

BIFε
n ∈ arg max

z∈Zε(θn)
min

x∈Z\{z}
Wε,n(z, x) = zF (νn, Nn) with zF (νn, Nn) as in (7.5). (8.3)

Since the Fε leader answer has a high computational cost, we advocate using the IFε leader
answer. Those two choices will be asymptotically equivalent provided that the sampling rule
ensures convergence towards the set of optimal easiest-to-verify allocation wF (ν) .

As for the EB leader, the IFε leader might be too greedy when no additional exploration
is enforced (implicitly or explicitly). While one could derive an optimistic version of the IFε

leader (by deriving concentration results), it is not clear how to use a sampler to obtain a
randomized version of the IFε leader. Fortunately, Chapter 5 advocates that there is no need
for additional exploration when considering ε-BAI since ε > 0 acts as a regularizer.
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8.2 Linear Top Two Algorithm

Remark 8.1 (Expected Simple Regret). When the goal is to have a vanishing expected simple
regret on the candidate answer (as for EB-TCε-1/2 in Chapter 5), the instantaneous easiest-to-
verify answer is doomed to be sub-optimal on some instances. On instances θ such that zF (ν) /∈
z⋆(θ) + Span({θ})⊥, we have limn→+∞ Eν [⟨θ, z⋆(θ) − ẑn⟩] > 0 for candidate answers (ẑn)n such
that limn→+∞ ẑn = zF (ν) (since ⟨θ, z⋆(θ) − zF (ν)⟩ > 0 ). Therefore, we should use a leader that
identifies z⋆(θ), e.g. the EB, UCB, or TS leaders.

Challenger answer In Section 2.2.2, we presented several choices of challenger answers which
can straightforwardly be adapted. The TCε and TCIε challenger consider

CTCε
n ∈ arg min

z∈Z\{Bn}
Wε,n(Bn, z) and CTCIε

n ∈ arg min
z∈Z\{Bn}

{Wε,n(Bn, z) + logNn,z} .

The RSε challenger takes i.e. CRSε
n ∈ arg maxz∈Z⟨λn, z⟩ with λn ∼ Πn until Bn /∈ Zε(λn) . The

resampling step is even more computationally expensive when ε > 0 .
Historically, LinGapE [Xu et al., 2018] extends the LUCB algorithm to the linear bandit

setting. As such, it is the first Top Two algorithm for structured bandits. LinGapE uses the EB
leader and a UCB challenger, i.e. CUCB

n ∈ arg maxz∈Z\{Bn}{⟨θ̃n, z −Bn⟩ +
√
g(n)∥z −Bn∥V −1

Nn

}
where g(n) is a bonus calibrated with concentration results and θ̃n is the regularized least-
squared estimator, i.e. θ̃n = (VNn + λId)−1∑

t∈[n−1]Xt,ItIt . Xu et al. [2018] proposed several
target allocations given this pair of leader/challenger. While it remains a heuristic, the target
allocation achieving the best empirical performance is a greedy (deterministic) choice, which
samples In ∈ arg mina∈A ∥Bn − Cn∥(VNn +aaT )−1 . It stops when the empirical gap between the
LCB of Bn and the UCB of Cn is lower than ε .

8.2.1 Target Allocation Over Arms

Due to the underlying structure, it is possible to collect information on any arms to verify that
the leader is better than the challenger. Conditioned on (Bn, Cn) , one should define a target
allocation over arms, which we will denote by βn(Bn, Cn) ∈ ΣK . As in Section 2.2.3, we first
present several fixed designs, which arose out of convenience yet are doomed to be sub-optimal.
Then, we extend the optimal design of IDS to the transductive linear bandit setting.

Fixed design approach Since answers are not arms that can be pulled, it is neither possible to
sample both the leader and the challenger answers, nor possible to sample the leader with a
fixed proportion β . Moreover, even when θ is known, it is not clear which arm is informative
enough to allocate a fixed proportion β to it.
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Extending the Top Two Approach

It is straightforward to generalize the idea of sampling the arm that yields the largest
empirical transportation cost would the estimator θn be unchanged, i.e.

In ∈ arg max
a∈A

Cε(Bn, Cn; νn, Nn + 1a) .

For Gaussian distribution, only the denominator of Cε(z, x; ν, w) depends on the allocation w ,
and the means are “decoupled” from the allocation. Therefore, we obtain that

In ∈ arg min
a∈A

∥Bn − Cn∥(VNn +aaT )−1 = arg max
a∈A

⟨V −1
Nn
a,Bn − Cn⟩2

1 + ∥a∥2
V −1

Nn

, (8.4)

where the second equality uses the Sherman-Morrison formula (A+uvT)−1 = A−1 − A−1uv
T

A−1

1+vT A−1u

. The choice (8.4) is made by the greedy version of LinGapE [Xu et al., 2018]. Similarly, one can
sample the arm for which the gradient of the empirical transportation cost is the largest, i.e.

In ∈ arg max
a∈A

∂Cε(Bn, Cn; νn, Nn)
∂wa

= arg max
a∈A

⟨V −1
Nn
a,Bn − Cn⟩2 , (8.5)

where the second equality uses Lemma 8.2 (proved with standard linear algebra). While (8.5)
differs slightly from (8.4), there are asymptotically equivalent since ∥a∥2

V −1
Nn

→n→+∞ 0 .

Lemma 8.2. Let w such that Vw is invertible. For all z ∈ Zε(θ) , x ̸= z and a ∈ A ,

∂Cε(z, x; ν, w)
∂wa

= Cε(z, x; ν, w)⟨V −1
w a, z − x⟩2

∥z − x∥2
V −1

w

and
∑
a∈A

wa
∂Cε(z, x; ν, w)

∂wa
= Cε(z, x; ν, w) .

(8.6)

The choice (8.5) is made by BC-TE [Lee et al., 2023]. For vanilla bandits, BC-TE [Lee et al.,
2023] is shown to be near optimal with a characteristic time T (ν) defined in (2.9). Compared
to T ⋆(ν) , the optimization over the simplex in T (ν) is constrained with a problem-dependent
condition, namelyw(2)/(wi⋆ +w(2)) = γ where γ is defined implicitly in (2.10). For transductive
linear bandits, using (8.5) also yields a constraint on the asymptotic allocation. Providing an
explicit formula for this constraint is beyond the scope of this thesis. Let T ε(ν, z) be the character-
istic time defined as Tε(ν, z) in (8.1) where the optimization over the simplex is restricted by this
(conjectured) problem-dependent condition. We conjecture that (1) T ε(ν, z⋆(θ))/Tε(ν, z⋆(θ))
is not too large, and (2) that T ε(ν, z⋆(θ)) can be reached asymptotically by using the EB-TC
algorithm with (8.5). While the greedy LinGapE [Xu et al., 2018] relies on the UCB challenger,
this might explain the good empirical performance of the greedy LinGapE [Xu et al., 2018] and
pave the way to a theoretical analysis of this heuristic algorithm (which has state-of-the-art
empirical performance).
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In both (8.5) and (8.4), the ties are broken arbitrarily at random. Therefore, it is equivalent
to using a randomized mechanism to reach the target allocation βn(Bn, Cn), which is a vector
uniformly supported on the set of maximizers of the r.h.s. of each equation.

Optimal design IDS Similarly, as in Section 2.2.3, it is possible to simplify the dual formulation
of Tε(ν, z)−1 to obtain a target allocation over arms extending IDS [You et al., 2023] for linear
bandits. By computing the contribution of an arm a to the empirical transportation cost between
(z, x) , we define βn,a(z, x) = 1/K for all a ∈ A if ε+ ⟨θn, z − x⟩ ≤ 0 , and

∀a ∈ A, βn,a(z, x) =
Nn,a

∂Cε(z,x;νn,Nn)
∂wa

Cε(z, x; νn, Nn) = Nn,a

⟨V −1
Nn
a, z − x⟩2

∥z − x∥2
V −1

Nn

otherwise , (8.7)

where the second equality uses Lemma 8.2 which also yields that βn(z, x) ∈ ΣK . As for the
vanilla setting, the IDS proportions are independent of the empirical means and the slack ε for
Gaussian with known variance.

Likewise, the IDS proportions are obtained by simplifying the dual formulation of the
optimization problem Tε(ν, z)−1 = maxw∈ΣK

minx∈Z\{z}Cε(z, x; ν, w) which can be seen as the
following convex optimization problem

Tε(ν, z)−1 = max
{
ϕ |

∑
a∈A

wa = 1, ∀a ∈ A, wa ≥ 0, ∀x ∈ Z \ {z}, ϕ− Cε(z, x; ν, w) ≤ 0
}
.

(8.8)
Lemma 8.3 gives a necessary and sufficient condition for optimality in (8.8), which features

a dual allocation vector γ ∈ ΣZ−1 . Intuitively, the dual variable γx should be thought as
the conditional probability of selecting answer x as challenger given that the leader is z .
Moreover, βa(z, x; ν, w) represents the conditional probability of pulling arm a given that
the leader/challenger pair of answers is (z, x) . Therefore, it is intuitive to take βn(z, x) =
β(z, x; νn, Nn) . Lemma 8.3 recovers Lemma 2.4 for vanilla bandits (see proof in Appendix H.1).

Lemma 8.3. Let z ∈ Zε(θ) . A feasible solution (ϕ,w) is optimal for (8.8) if and only if ϕ =
Tε(ν, z)−1 and there exists a dual variable γ ∈ ΣZ−1 such that, γx(ϕ− Cε(z, x; ν, w)) = 0 for all
x ̸= z , and w =

∑
x∈Z\{z} γxβ(z, x; ν, w) where β(z, x; ν, w) ∈ ΣK is such that

∀a ∈ A, βa(z, x; ν, w) = wa

Cε(z, x; ν, w)
∂Cε(z, x; ν, w)

∂wa
.
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ACC algorithm In a concurrent work, Qin and You [2023] introduced the Adaptive Culprit
Curbing (ACC) and ACC-TS sampling rules for general pure exploration problems. Those
algorithms are particular instances of Algorithm 8.1, which rely on randomization and use the
IDS target allocation defined above. For the choice of the leader/challenger pair, ACC considers
EB-TC, and ACC-TS uses TS-RS. As for Algorithm 8.1, it is an open problem to analyze ACC
and ACC-TS for linear bandits, yet they have good empirical performance.

While both ACC and Algorithm 8.1 were designed concurrently, we emphasize that Algo-
rithm 8.1 arose by studying transductive linear bandit while ACC was aimed to tackle pure
exploration problems in general. Due to its generality, ACC can tackle many interesting pure
exploration problems. For example, ACC-TS recovers the Murphy sampling algorithm [Kauf-
mann et al., 2018] when considering GAI (see Chapter 6). Therefore, the analysis of these
generic algorithms is an interesting research direction in the field of pure exploration problems.

Optimal design BOLD Similarly as in Section 2.2.3, one could attempt to generalize the
BOLD target [Chen and Ryzhov, 2023, Bandyopadhyay et al., 2024] defined for vanilla BAI
in (2.15), i.e.

In = Bn if
∑

i ̸=Bn

∂C(Bn,i;νn,Nn)
∂wBn

∂C(Bn,i;νn,Nn)
∂wi

> 1 , and In = Cn otherwise .

Lemma 8.4 recovers Lemma 2.5 for vanilla bandits (see proof in Appendix H.2).

Lemma 8.4. Let z ∈ Zε(θ) . An allocation w is optimal for Tε(ν, z)−1 if and only there exists a
dual variable γ ∈ ΣZ−1 such that

Information balance: ∀x ∈ Z1, Cε(z, x; ν, w) = Tε(ν, z)−1 ,

Overall balance: ∀a ∈ A1, Tε(ν, z)
∑

x∈Z1

γx
∂Cε(z, x; ν, w)

∂wa
= 1 ,

where A1 = {a ∈ A | wa > 0} and Z1 = {x ∈ Z \ {z} | γx > 0} .

As in Lemma 2.5, Lemma 8.4 also features an information balance and an overall balance,
which are expressed slightly differently. First, the information balance (or equality at equilib-
rium) will only holds for a subset of answers x , and we have Cε(z, x; ν, w) > Tε(ν, z)−1 for
the others. Intuitively, some answer directions might be redundant (or dominated by other
directions). The situation is akin to the offline-online paradigm studied in Agrawal et al. [2023]
where some answer directions are already saturated due to offline data. Second, the dual
γ ∈ ΣZ−1 has not been removed, and it is now defined implicitly as a solution of a system of
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|supp(w)| linear equations. The specificity of linear bandits lies in the fact that the support of
an optimal allocation might not be dense (i.e. |supp(w)| ≤ K ). Intuitively, some arms might be
redundant (or dominated by other directions) when collecting information on θ to return a
correct answer z ∈ Zε(θ) . In the vanilla setting, there are alsoK equations to define γ ∈ ΣK−1

. Solving the firstK − 1 equations specifies γ , and plugging it in the last equation yields the
overall balance (single) equation. Compared to the vanilla setting, it is less straightforward to
derive a BOLD target out of the empirical version of the overall balance. There is no longer a
one-dimensional condition to be checked, and it is not straightforward to derive an empirical
version of the dual parameter.

8.2.2 Mechanism to Reach the Target Allocation

As in Section 2.2.4, we need a mechanism to reach the target allocation βn(Bn, Cn) ∈ ΣK . The
randomized approach will sample arm In ∼ βn(Bn, Cn) , i.e.

∀a ∈ A, P|n(In = a | (Bn, Cn) = (z, x)) = βn,a(z, x) .

Note that the fixed design approaches presented above rely on randomization. When the
leader/challenger pair is deterministic, we can rely on the tracking approach when using the
optimal design IDS. More precisely, we consider Z(Z − 1) tracking procedures, one per pair of
answers (z, x) ∈ Z2 such that z ̸= x . Given the leader/challenger pair of answers (Bn, Cn) at
time n , the next arm to pull is

In = arg min
a∈A

{Nn,a(Bn, Cn) − Tn+1(Bn, Cn)βn+1,a(Bn, Cn)} , (8.9)

with Tn(z, x) =
∑

t∈[n−1] 1 ((Bt, Ct) = (z, x)) ,Nn,a(z, x) =
∑

t∈[n−1] 1 ((Bt, Ct) = (z, x), It = a)
and βn,a(z, x) = Tn(z, x)−1∑

t∈[n−1] 1 ((Bt, Ct) = (z, x))βt,a(z, x) . Using Theorem 6 in De-
genne et al. [2020b] for the tracking procedure yields Lemma 8.5.

Lemma 8.5. For all n > K , all z ∈ Z , all x ∈ Z \ {x} and all a ∈ A , we have −
∑K

i=2
1
i ≤

Nn,a(z, x) − Tn(z, x)βn,a(z, x) ≤ 1 .

8.2.3 LεTT Algorithm

The LεTT algorithm (see Algorithm 8.2) is a specific instance of Algorithm 8.1 which combines
the IFε leader, the TCε challenger, the IDS target over arms and tracking to reach it. Using our
naming convention, LεTT is IFε-TCε-IDS. For ε = 0 , we recommend using the TCI challenger to

173



Extending the Top Two Approach

1 Input: Slack ε > 0 .
2 Output: Next arm to sample an and next recommendation ẑn .
3 Set ẑn ∈ arg maxz∈Zε(θn) minx∈Z\{z}Wε,n(z, x) ; // Candidate answer

4 Set Bn = ẑn and Cn ∈ arg minx∈Z\{Bn}Wε,n(Bn, x) ; // Leader and challenger

5 Set wn,a(Bn, Cn) = Nn,a
⟨V −1

Nn
a,Bn−Cn⟩2

∥Bn−Cn∥2
V −1

Nn

, then update (wn+1,a(Bn, Cn))a∈A and

Tn+1(Bn, Cn) ; // Target allocation
6 Set an = arg mina∈A{Nn,a(Bn, Cn) − Tn+1(Bn, Cn)wn+1,a(Bn, Cn)} ; // Tracking

Algorithm 8.2: LεTT (or IFε-TCε-IDS) algorithm.

alleviate a greedy behavior by fostering an implicit exploration over arms. For vanilla bandits,
it recovers the EB-TCε-IDS algorithm studied in Chapter 5.

When the objective is to have vanishing expected simple regret, we recommend using
EB-TCε-IDS algorithm. Recall that the EB leader (or TS/UCB ones) should be used in that case
since the IFε leader answer is chosen to reach asymptotic optimality in the fixed-confidence
setting.

8.3 Towards an Analysis of a Saddle-point Algorithm

It is still an open problem to obtain any guarantees on any instances of the Structured Top Two
approach. Even without the structural assumption of linear bandits, we should keep in mind
that the asymptotic optimality of the Top Two approach in the fixed-confidence setting is only
proven for Gaussian with known variance. For other classes of distributions, our proof only
establishes asymptotic β-optimality. Likewise, anytime guarantees on the uniform probability
of ε-error are only known for EB-TCε-β, but not for EB-TCε-IDS. Unfortunately, there is no
natural notion of fixed design β for linear bandits. Due to the use of the optimal design IDS,
there are still major challenges to solve before showing that, for ε-BAI in transductive linear
bandits, (1) the LεTT algorithm is asymptotically optimal and (2) the EB-TCε-IDS algorithm
has any time guarantees on the expected simple regret.

A natural first step to understanding how to analyze a bandit algorithm is to consider the
deterministic setting, where there is no randomness in the observations. In other words, we
know the regression parameter θ exactly (i.e. θn = θ for all n ), hence we also know Zε(θ) . In
the deterministic setting, the goal is now to solve the optimization problem Tε(ν)−1 with a fully
sequential algorithm. In other words, we would like to find a saddle-point of

Tε(ν)−1 = max
z∈Zε(θ)

max
w∈ΣK

min
x∈Z\{z}

Cε(z, x; ν, w) .
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Game based approach For instance, LεBAI in Chapter 7 can be seen as a saddle-point al-
gorithm. First, the deterministic LεBAI algorithm plays a leader answer z̃n ∈ Z (Outer-Max
player) using a Z-oracle. In the analysis of Theorem 7.5, we used the Fε leader answer as
Z-oracle. Since θ is known, the Z-oracle is fixed to be z̃n ∈ zF (ν) . Second, LεBAI sequentially
learns the optimal allocation by playing an allocation over arms wn ∈ ΣK (Inner-Max player)
using a learner LA (i.e. an online optimization algorithm, e.g.AdaHedge [de Rooij et al., 2014]).
For the deterministic setting, the forced exploration by mixing with the uniform allocation is
not needed. Third, given wn , the nature (Min player) plays the best response parameter which
is the most confusing alternative regression parameter, i.e. λn ∈ arg minλ∈¬εzF (ν) ∥θn − λ∥2

Vwn
.

Since optimism is superfluous for the deterministic setting, the learner LA is updated with the
gain vector Un ∈ RK

+ where Un,a = ∥θn − λn∥2
aaT for all a ∈ A . Finally, the empirical allocation

is updated by using tracking, i.e. In ∈ arg mina∈A{Nn,a −
∑

t∈[n]wt,a} .
Since LεBAI uses the Fε leader answer as Z-oracle, LεBAI requires to first compute zF (ν) ,

hence to solve Tε(ν)−1 . Therefore, LεBAI is not a fully sequential saddle-point algorithm. As
heuristic, we proposed to use the IFε leader answer as Z-oracle, i.e. z̃n ∈ zF (ν,Nn) . While the Fε

leader is fixed, the IFε leader answer depends on the current allocationNn . This heuristic LεBAI
is a fully sequential saddle-point algorithm which achieves competitive empirical performance.
Unfortunately, the proof still eludes us.

Structured Top Two approach The Structured Top Two approach can also be seen as a saddle-
point algorithm. First, the deterministic Structured Top Two approach plays a leader answer
Bn ∈ Z (Outer-Max player) using a leader mechanism LB . Since θ is known, the leader
answer will belong to the set of correct answers, i.e.Bn ∈ Zε(θ) for all n , yet it might vary.
Second, given the leader Bn , the nature plays a challenger answer Cn ∈ Z \ {Bn} (Min player)
using a challenger mechanism LC . Third, given the leader/challenger pair (Bn, Cn) , the
Structured Top Two approach plays an allocation over arms βn(Bn, Cn) ∈ ΣK (Inner-Max
player) using a target mechanism LT . Finally, the empirical allocation is updated by using a
reaching mechanism LR .

Conceptually, the main difference with the game-based approach lies in the order in which
each player acts. While the game-based approach considers the players (Outer-Max, Inner-Max,
Min), the Structured Top Two approach uses the players (Outer-Max, Min, Inner-Max). In
both cases, the players are acting sequentially in the sense that they can leverage the knowledge
of the actions of the previous players. The idea of using (Min, Max) players instead of (Max,
Min) ones was introduced in Degenne et al. [2019]. For example, in Section 3.2 of Degenne
et al. [2019], the authors suggest using the Follow-The-Perturbed-Leader for the Min player,
followed by the best response for the Max player. It is worth noting that the (Max, Min) players
approach has received more attention in subsequent works than their (Min, Max) players
counterpart.
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8.3.1 A Case Study: LεTT Algorithm

Even though it is appealing to study the Structured Top Two approach with a unified analysis
as done in Chapter 2, a natural first step is to consider a specific instance. Due to its empirical
success (see Section 8.4) and its link with the EB-TCε-IDS algorithm (analyzed in Chapter 5),
we consider the LεTT algorithm in the deterministic setting.

Let |Zε(θ)| = Zε . The optimization problem Tε(ν)−1 can be written as

Tε(ν)−1 = max
p∈ΣZε

∑
z∈Zε(θ)

p(z)

 min
q̃(z)∈ΣZ−1

max
w̃(z)∈ΣK

∑
x∈Z\{z}

q̃(z, x)Cε(z, x; ν, w̃(z))


= max

p∈ΣZε

min
q∈(ΣZ−1)Zε

max
w̃∈(ΣK)Zε

∑
z∈Zε(θ)

∑
x∈Z\{z}

p(z)q̃(z, x)Cε(z, x; ν, w̃(z)) , (8.10)

where we used Sion’s lemma to swap the inner max-min in the first equality. Therefore, solving
Tε(ν)−1 is equivalent to finding a saddle-point (p, q̃, w̃) ∈ ΣZε × (ΣZ−1)Zε × (ΣK)Zε of (8.10).

The LεTT algorithm attempts to find a saddle-point by learning (pn, q̃n, w̃n) sequentially.
For z ∈ Zε(θ) , we define pn(z) = Tn(z)/(n − 1) with Tn(z) =

∑
x ̸=z Tn(z, x) hence pn ∈ ΣZε ;

for all x ̸= z , q̃n(z, x) = Tn(z, x)/(n − 1); and for all a ∈ A , w̃n(z, a) = Nn(z, a)/(n − 1)
with Nn(z, a) =

∑
x ̸=z Nn,a(z, x) and wn(z, a) = 1

n−1
∑

t∈[n−1] 1 (Bt = z)βt,a(z, Ct) . Using
Lemma 8.5, we have maxz∈Zε(θ) maxa∈A |w̃n(z, a) − wn(z, a)| = O(1) . Due to their closeness,
the convergence of (pn, q̃n, wn) towards a saddle point should imply the one of (pn, q̃n, w̃n) .
Intuitively, (pn, q̃n, wn) can be viewed as a A-continuous version of (pn, q̃n, w̃n) , where fractions
of samples can be allocated to arms. Even though the algorithm is learning a vector of allocations
over arms w̃ ∈ (ΣK)Zε , it is effectively playing an allocation over armsw ∈ ΣK . Let us define the
A-continuous version of the empirical allocation Nn/(n− 1) as wn,a = 1

n−1
∑

t∈[n−1] βt,a(Bt, Ct)
for all a ∈ A hence wn ∈ ΣK . Using Lemma 8.5, we have ∥(n − 1)wn − Nn∥∞ = O(1) . For
simplicity, we consider theA-continuous learning algorithm instead of its original version, which
could be referred to as A-discrete since only one arm can be pulled at each time. Therefore, we
replace Nn/(n− 1) by wn in the algorithm. Similarly, we marginalize over the leader answer,
i.e. qn(x) =

∑
z∈Zε(θ) q̃n(z, x) for all x ∈ Z hence qn ∈ ΣZ .

At this point, we only used that the LεTT algorithm use tracking as in (8.9) to consider an
A-continuous optimization problem. As initialization, we have p1 = 1Zε/Zε , q1 = 1Z/Z and
w1 = 1K/K . In ΣZε × ΣZ × ΣK ,1 the update step can be written as

pn+1

qn+1

wn+1

 =
(

1 − 1
n

)
pn

qn

wn

+ 1
n


1{Bn}

1{Cn}

βn(Cn, Bn)

 .

1Note the difference between those updates and the allocations (p, q, w̃) ∈ ΣZε × (ΣZ−1)Zε × (ΣK)Zε defined
in (8.10).
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TheOuter-Max player selects the IFε leader and theMin player uses the TCε challenger, i.e.Bn =
arg maxz∈Zε(θ) minx∈Z\{z}Cε(z, x; ν, wn) and i.e. Cn = arg minx∈Z\{Bn}Cε(Bn, x; ν, wn) . Given
the current allocationwn , this is a Frank-Wolfe step for theOuter-Max player and a best-response
step for the Min player. The Inner-Max player considers the optimal design IDS, i.e.

βn(Bn, Cn) = 1
Cε(Bn, Cn; νn, wn)wn ⊙ ∇wCε(Bn, Cn; ν, wn) ,

where ⊙ denotes the coordinate-wise multiplication, i.e. x⊙ y = (xaya)a∈A . Given the current
allocation wn and the played leader/challenger pair (Bn, Cn) , this corresponds to a gradient
step. More precisely, it is a convex combination between the current allocation wn and a
gradient, which is reweighted coordinate-wise and normalized by the empirical transportation
cost.

Open problems In the deterministic setting, it is still an open problem to show that the above
online optimization algorithm converges towards a saddle-point of Tε(ν)−1 . One could also
attempt to study the special case where the Outer-Max player is removed, either by assuming
that we have access to the Fε leader answer as Z-oracle or by considering ε = 0 in which case
Zε(θ) = {z⋆} . It is also an open problem to analyze either of those simpler cases that aims at
solving the optimization problem Tε(ν, z)−1 sequentially.

Dealing with stochastic observations Once those open problems are solved in the deter-
ministic setting, one should still cope with the randomness of the observations if we want to
analyze LεTT. Adding a forced exploration step (i.e.mixing with the uniform allocation) will
yield an asymptotic analysis, i.e.we virtually know θ for n large enough. However, in the Top
Two approach, we showed that the forced exploration is unnecessary. Adding it amounts to
worsening the performance of the algorithm to ease the analysis. The promise of the Structured
Top Two approach is that the combined choice of the leader, challenger, and target is enough to
ensure (1) sufficient exploration and (2) convergence towards an optimal allocation. While we
believe that the slack ε > 0 would be enough to foster implicit exploration, one could use other
approaches based on optimism or randomization.

8.4 Experiments

We show that LεTT has competitive empirical performance compared to existing ε-BAI al-
gorithms on hard and random instances. The experimental setup is similar to the ones in
Sections 5.5 and 7.5, hence we refer to Chapters 5 and 7 for more details. In particular, we
consider the heuristic LεBAI which uses the IFε leader as Z-oracle instead of the Fε leader (see
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Figure 8.1 – Empirical stopping time on the hard instance ( A = Z ) for (top) ε = 0.05 and (bottom)
ε = 0.1 . All the algorithms use the GLRε stopping rule (8.2). “-G” denotes when the leader/challenger
(BEB

n , C
TCε0
n ) is used both for the sampling and the stopping rules. On the right, Lε0TT with ε0 ∈

{0.15, 0.1, 0.05} . “-O” denotes LinGapE with its original stopping rule.

Section 7.5). We consider linear bandits ( A = Z ) and δ = 0.01 . Our results average over 5000
runs.

Hard instances As in Section 7.3.3, we use hard instances with multiple correct answers,
i.e. |Zε(θ)| > 1 . Taking θ = e1 with ei = (1 (j = i))j∈[d] , the answers set is defined as
Z = {e1, · · · , ed, ad+1, ad+2}where ad+1 = cos(ϕ1)e1+sin(ϕ1)e2 ∈ Zε(θ) and ad+2 = cos(ϕ2)e1+
sin(ϕ2)e2 /∈ Zε(θ) . Considering d = 2 , we use ϕ1 = rεθε and ϕ2 = (1 + rε)θε with θε =
arccos(1 − ε) and rε = 0.1 .

In Figure 8.1, we see that LεTT performs on par with LinGapE and LεBAI, and that it
outperforms other algorithms. Moreover, the performance is not too sensitive to the slack ε0

used by the TCε0 challenger for ε-BAI. As expected, we observe better performance when using
(BIFε0

n , C
TCε0
n ) instead of (BEB

n , C
TCε0
n ) . In Table 8.1, we observe that LεTT and LinGapE sample

the direction a2 the most. In particular, it allocates more samples to (a3, a4) than LinGapE
which prefers to collect observations from a1 .
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Table 8.1 – Average number of pulls per arm and empirical stopping time ( ± σ ) on the hard instance (
A = Z ) for ε = 0.05 . All the algorithms use the GLRε stopping rule (8.2). “-O” denotes LinGapE with
its original stopping rule.

a1 a2 a3 a4 Total

LεTT 29 250 17 3 299 (±119)
L2εTT 35 243 22 4 304 (±120)
L3εTT 61 223 38 6 327 (±130)

LinGapE 48 250 1 1 299 (±119)
LinGapE-O 50 273 1 1 325 (±111)

LεBAI 77 229 13 3 322 (±126)
X Y-Adaptive 77 238 1 1 316 (±119)

X Y-Static 215 216 1 1 433 (±171)
LinGame 111 221 50 11 393 (±150)
DKM 170 219 167 170 725 (±286)

Uniform 212 212 211 211 845 (±332)

Random instances As in Section 7.5, we use random instances to assess the impact of higher
dimensions. For the answer set, 19 vectors (ak)k∈[19] are uniformly drawn from Sd−1 :={
a ∈ Rd : ∥a∥2 = 1

}
and set θ = a1 . To enforce having multiple correct answers, a modification

of the greedy answer is added such that a20,i = a1,i for i ̸= i0 and a20,i0 =
1−∥θ∥2

2+µ2
i0

−rεε

θi0
where

i0 = arg mini∈[d] θi and rε = 0.1 .
In Figure 8.2, we see that LεTT is performing on par with LinGapE. Notably, it outperforms

the LεBAI. When the dimension d increases, we already observed in Figure 7.4 of Chapter 7
that the empirical performance of LεBAI was scaling poorly compared to LinGapE. Even in the
vanilla BAI setting, the empirical performance of the game-based approach is known to suffer
from increased dimension (despite being asymptotically optimal), see e.g.DKM [Degenne
et al., 2019] in Figure 2.2 of Chapter 2.

8.5 Discussion

In Chapter 8, we extended the Top Two approach to tackle structured bandits by proposing
the Structured Top Two approach, which is defined by four choices (leader answer, challenger
answer, target allocation andmechanism to reach it). In ε-BAI for transductive linear bandits, we
proposed the LεTT algorithm which recovers EB-TCε for vanilla BAI (see Chapter 5). We drew
a connection between LεTT and a saddle-point algorithm aiming to solve Tε(ν)−1 sequentially.
Even in the deterministic setting where there is no randomness, the analysis of this procedure
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Figure 8.2 – Empirical stopping time on random instances ( A = Z ) with d ∈ {6, 12} (from left to right)
for (top) ε = 0.05 and (bottom) ε = 0.1 . All the algorithms use the GLRε stopping rule (8.2). Lε0TT
with ε0 ∈ {0.15, 0.1, 0.05} .

is still an open problem. Our empirical study showcased the good empirical performance of
LεTT.

This is one of themost exciting research directions as regards the Top Two approach. Solving
it would pave theway to the analysis of Top Two algorithms for other pure exploration problems
and other types of structure, hence obtaining computationally efficient algorithms with good
theoretical guarantees for any pure exploration problem.
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Chapter 9

General Summary and Perspectives

9.1 Summary on our Contributions

In this thesis, we havemade contributions to the field of pure exploration problems for stochastic
multi-armed bandits. We endeavored to showcase the effectiveness of the Top Two approach
in addressing these problems. In addition to its simplicity, interpretability, generalizability,
and versatility, we have demonstrated that this principled methodology offers nearly optimal
theoretical guarantees alongside state-of-the-art empirical performance.

In Part I, we delved into the fixed-confidence vanilla BAI setting. We proposed a unified
perspective on the class of Top Two algorithms that put forward four choices: leader answer,
challenger answer, targeted allocation, and the mechanism to reach it. We presented a unified
asymptotic analysis of the Top Two approach, identifying desirable properties for each of
these four choices, alongside a non-asymptotic analysis. We extended the algorithms and the
asymptotic analysis to encompass other classes of distributions. For Gaussian distributions
with unknown variance, we introduced and analyzed two approaches to handle unknown
variances: plugging in the empirical variance or adapting the transportation costs. Notably,
we derived new time-uniform concentration inequalities to calibrate our stopping rules. For
the non-parametric class of bounded distributions, we proposed to adapt the transportation
costs or to use the Dirichlet sampler and derive new properties for the Kinf functions and the
Dirichlet sampler.

In Part II, we studied the impact of having multiple correct answers and proved that
algorithms can have good anytime guarantees. In ε-BAI, we introduced EB-TCε, an anytime
sampling rule applicablewithoutmodification for fixed confidence or fixed budget identification
(without prior knowledge of the budget). We established bounds on its expected sample
complexity in the fixed confidence setting, notably demonstrating its asymptotic optimality
when combined with an adaptively tuned exploration parameter. Additionally, we provided
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upper bounds on its probability of error at any time and for any error parameter, which further
yields upper bounds on its simple regret at any time. In GAI, we proposed APGAI, which
simultaneously has any time upper bounds on its probability of error and non-asymptotic
upper bound on its expected sample complexity.

In Part III, we aimed to understand the influence of the structure in pure exploration prob-
lems with multiple correct answers. To this end, we considered ε-BAI for transductive linear
bandits in the fixed-confidence setting. We emphasized the significance of the candidate answer
choice and advocated for using the instantaneous easiest-to-verify answer. We proposed a
straightforward procedure to adapt existing BAI algorithms for ε-BAI, as well as an asymptoti-
cally optimal game-based algorithm. Lastly, we extended our unified perspective on the class
of Top Two algorithms to address structured bandits. While the analysis of the Structured Top
Two approach remains challenging, we highlighted some obstacles and linked them with the
analysis of a saddle-point algorithm. Our empirical study underscored the favorable empirical
performance of the LεTT algorithm, which recovers EB-TCε for vanilla BAI.

9.2 Perspectives

Throughout this thesis, we have proposed potential avenues for future research. Below, we
highlight three particularly promising directions.

Structured Top Two approach Chapter 8 introduced a unified Structured Top Two approach.
Even within the confined scope of LεTT for transductive linear bandits in the deterministic
setting, we encountered challenges in the analysis. Solving this simplified scenario is crucial
for understanding how to study the Structured Top Two approach in linear settings, and it
would pave the way to analyze the Structured Top Two approach in diverse pure exploration
problems (e.g. , Top-k identification, Pareto set identification) and other types of structure (e.g. ,
combinatorial bandits, generalized linear bandits). The objective is to develop computationally
efficient algorithms with robust theoretical guarantees for any pure exploration problem.

Anytime setting Thanks to its versatility, the anytime setting is a promising framework that
captures the fact that constraints in decision-making scenarios can fluctuate unpredictably. The
stream of recommendation can be leveraged by external actors on different downstream tasks,
and the induced policies will inherit good theoretical properties. To derive anytime guarantees
on existing algorithms, both their expected sample complexities and their probabilities of error
have to be controlled. Better characterizing the Pareto front on the anytime performance with
theoretical lower bounds would reveal the fundamental trade-off between achieving (i) a low
expected sample complexity or a low probability of error, and being competitive in (ii) the
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asymptotic regime (i.e. δ → 0 or n → +∞ ) or the moderate regime (i.e. any δ ∈ (0, 1) or any
n ∈ N ). Hopefully, this understanding will help to derive better anytime algorithms.

Privacy, safety, and fairness Pure exploration problems are progressively used to model
data-sensitive applications, such as adaptive clinical trials or hyperparameter tuning. Given the
privacy concerns inherent in these applications, it is imperative to enforce privacy constraints
on algorithms. Although this manuscript did not delve into this area, we have proposed and
examined differential privacy variants (global and local) of the fixed-confidence BAI problem.
Extending these concepts to other pure exploration problems and structured bandits represents
an exciting avenue for future research. Furthermore, pure exploration problems are relevant to
applications involving safety and fairness constraints. Before human clinical trials, the safety
of a drug must be rigorously assessed on multiple criteria. During human clinical trials, fast
identification of promising drugs is essential while ensuring fair allocation.
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Appendix A

The Lambert W Function

The LambertW function is defined implicitly by the equationW (x)eW (x) = x . It defines two
main branchesW−1 (negative) andW0 (positive).

• W−1 , defined on [−e−1, 0) , is decreasing andW−1(−e−1) = −1 .

• W0 , defined on [−e−1,+∞) , is increasing andW0(−e−1) = −1 .
The functionW0 satisfies for all x ≥ e ,W0 (ex) ≤ x and

log log(x)
2 log(x) ≤ W0(x) − (log(x) − log log(x)) ≤ e

e− 1
log log(x)

log(x) .

Lambert’s branches are involved in the inversion of h(x) = x − log(x) . When x ≥ 1 , it
involves the negative branch. When x ≤ 1 , it involves the negative part of the positive branch.
To make the notations clearer, we define for all x ≥ 1

W−1(x) = −W−1(−e−x) and W 0(x) = −W0(−e−x) . (A.1)

Lemma A.1 gather useful properties onW−1 andW 0 that we will use.

Lemma A.1. (1) For x ≥ 1 , let h(x) = x− log(x) . Then,

∀y ≥ 1, y ≤ h(x) ⇐⇒

W−1 (y) ≤ x if x ≥ 1

W 0 (y) ≥ x if x ∈ (0, 1]
,

∀δ > 0,∀c > 0, e−c(h(x)−1) ≤ δ ⇐⇒

W−1
(
1 + 1

c log 1
δ

)
≤ x if x > 1

W 0
(
1 + 1

c log 1
δ

)
≥ x if x ∈ (0, 1)

,

∀x > 1, exp
(
−x+ e−x) ≤ W 0(x) ≤ exp

(
−x+ e1−x

)
,
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∀x > 1, x+ log(x) ≤ W−1(x) ≤ x+ log(x) + min
{1

2 ,
1√
x

}
,

∀u > 1,∀t > 1, W 0

(
1 + u

t

)
≥ 1
t

⇐⇒ t ≥ exp
(

1 +W0

(
u− 1
e

))
.

(2) The functionW−1 is increasing and strictly concave on (1,+∞) . The functionW 0 is decreasing
and strictly convex on (1,+∞) . In particular,

∀x > 1, (W 0)′(x) =
(

1 − 1
W 0(x)

)−1

and (W−1)′(x) =
(

1 − 1
W−1(x)

)−1

.

Proof. (1) Let y ≥ 1 and x ∈ (0, 1] . We obtain

W 0(y) ≥ x ⇐⇒ W0(−e−y) ≤ −x ⇐⇒ −e−y ≤ −xe−x ⇐⇒ y ≤ x− log(x)

where the second equivalence uses that −e−y = W0(−e−y)eW0(−e−y) , y 7→ yey is increasing on
[−1,+∞) andW0(x) has values on [−1, 0) for x ∈ [−e−1, 0) . Let x ∈ (0, 1) , δ, c > 0 . Then,

W 0

(
1 + 1

c
log 1

δ

)
≥ x ⇐⇒ 1 + 1

c
log 1

δ
≤ h(x) ⇐⇒ exp (−c (h(x) − 1)) ≤ δ

Let x > 1 and f(x) ∈ (0, 1) . Then, we obtain

W 0 (x) ≥ f(x) ⇐⇒ x ≤ f(x) − log(f(x))

For f(x) = e−x+e−x , we have x ≤ f(x) − log(f(x)) ⇐⇒ e−x ≥ 0 , hence this condition holds
andW 0 (x) ≥ f(x) . For f(x) = e−x+e1−x , we have x ≤ f(x) − log(f(x)) ⇐⇒ x ≤ 1 , hence
this condition doesn’t hold for x > 1 , henceW 0 (x) ≤ f(x) .

ForW−1(y) , the same arguments yield the three results, which were proven in Lemma A.1
and A.2 of Degenne [2019]).

We denote v = u−1
t > 0 . Since t > 1 , direct manipulations show that

W 0

(
1 + u

t

)
≥ 1
t

⇐⇒ 1 + u

t
≤ 1
t

− log
(1
t

)
⇐⇒ v + log(v) ≤ log

(
u− 1
e

)
⇐⇒ vev ≤ u− 1

e
⇐⇒ v ≤ W0

(
u− 1
e

)
⇐⇒ t ≥ u− 1

W0
(

u−1
e

) = e1+W0( u−1
e )

The equivalence introducing W0 uses that for α = u−1
e > 0 , W0(α)eW0(α) = α , y 7→ yey is

increasing on [−1,+∞) and v > 0 . The last equality uses that eW0(x) = x
W0(x) .
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(2) LetW denoteW0 orW−1 andW (x) = −W (−e−x) . It is known (by implicit derivation)
that W ′(z) = 1

z+eW (z) for z ̸= −e−1 . Using that eW (z) = z
W (z) , this yields that zW ′(z) =(

1 + eW (z)

z

)−1
=
(
1 + 1

W (z)

)−1 . For x ̸= 1 , using the above with z = −e−x , we obtain

W
′(x) = − d

dx
(
W (−e−x)

)
= −e−xW ′(−e−x) =

(
1 + 1

W (−e−x)

)−1
=
(

1 − 1
W (x)

)−1

SinceW0(−e−x) ∈ (−1, 0) for all x > 1 (positive branch on (−e−1, 0) ), we haveW 0(x) ∈ (0, 1)
, henceW ′

0(x) < 0 for x > 1 . Therefore,W 0 is decreasing on (1,+∞] . Using thatW ′(x) =(
1 − 1

W (x)

)−1
for x ̸= 1 , we obtain thatW ′

0 is increasing on (1,+∞] , hence strictly convex.
The same arguments yield thatW−1 is increasing and strictly concave on (1,+∞] . ■

Lemma A.2 was proven in Degenne [2019]. It is needed when using the peeling method.

Lemma A.2 (Lemma A.3 in Degenne [2019]). For a, b ≥ 1 , the minimal value of f(η) =
(1 + η)(a+ log(b+ 1

η )) is attained at η⋆ such that f(η⋆) ≤ 1 − b+W−1(a+ b) . If b = 1 , then
there is equality.
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Appendix B

Complements on Chapter 2

B.1 Proof of Lemma 2.2

We build upon Theorem 9 of Kaufmann and Koolen [2021] that is restated below. While
Theorem 9 was stated for Gaussian distributions with variance σ2 = 1 , it is direct to notice that
the result also holds for σ-sub-Gaussian distributions as mentioned by the authors.

Lemma B.1 (Theorem 9 of Kaufmann and Koolen [2021]). Consider a σ-sub-Gaussian bandit
ν with means µ ∈ RK . Let S ⊆ [K] and x > 0 .

Pν

∃n ∈ N,
∑
k∈S

Nn,k

2σ2 (µn,k − µk)2 >
∑
k∈S

2 log (4 + log (Nn,k)) + |S|CG

(
x

|S|

) ≤ e−x

where CG is defined in Kaufmann and Koolen [2021] by CG(x) = minλ∈]1/2,1]
gG(λ)+x

λ and

gG(λ) = 2λ− 2λ log(4λ) + log ζ(2λ) − 1
2 log(1 − λ) , (B.1)

where ζ is the Riemann ζ function and CG(x) ≈ x+ log(x) .

Using the computation from Section 1.4.2, for Gaussian with unit variance, we have

{τδ < +∞} ∩ Eerr
µ (τδ) ⊆

⋃
n∈N

⋃
i ̸=i⋆

{Nn,i(µn,i − µi)2 +Nn,i⋆(µn,i⋆ − µi⋆)2 > 2c(n− 1, δ)} .

By concavity of x → log(4+log x) , we have∑k∈{i⋆,i} log (4 + logNn,i) ≤ 2 log(4+log((n−1)/2))
for all i ̸= i⋆ and all n > K . Using Lemma B.1 and a union bound over i ̸= i⋆ yields
Pν

(
{τδ < +∞} ∩ Eerr

µ (τδ)
)

≤ δ .
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B.2 Proof of Lemma 2.3

Let hi⋆,j(ν, w, u) = wi⋆K−
inf(νi⋆ , u) + wjK+

inf(νj , u) and ui⋆,j(ν, w) ∈ arg minu∈R hi⋆,j(ν, w, u) .
The optimality condition yields ∂hi⋆,j

∂u (ν, w, ui⋆,j(ν, w)) = 0 . By differentiating C(i⋆, j; ν, w) =
hi⋆,j(ν, w, ui⋆,j(w)) , we obtain

∂C(i⋆, j; ν, w)
∂wi⋆

= ∂hi⋆,j

∂wi⋆
(ν, w, ui⋆,j(w)) + ∂hi⋆,j

∂u
(ν, w, ui⋆,j(w))∂ui⋆,j

∂wi⋆
(i⋆, i; ν, w) ,

∂C(i⋆, j; ν, w)
∂wj

= ∂hi⋆,j

∂wj
(ν, w, ui⋆,j(w)) + ∂hi⋆,j

∂u
(ν, w, ui⋆,j(w))∂ui⋆,j

∂wj
(i⋆, i; ν, w) .

Therefore, we have

∂C(i⋆, j; ν, w)
∂wi⋆

= K−
inf(νi⋆ , ui⋆,j(ν, w)) and ∂C(i⋆, j; ν, w)

∂wj
= K+

inf(νj , ui⋆,j(ν, w)) .

B.3 Proof of Lemma 2.4

Since Slater’s condition holds, the KKT conditions are necessary and sufficient for global
optimality. Let λ ≥ 0 , α ∈ RK

+ and γ ∈ RK−1
+ be the dual variables for the Lagrangian

L(ϕ,w;λ, α, γ) = ϕ+ λ

∑
i∈[K]

wi − 1

−
∑

i∈[K]
αiwi +

∑
i ̸=i⋆

γi(ϕ− C(i⋆, i; ν, w)) .

Using the complementary slackness condition, we have γi(ϕ− C(i⋆, i; ν, w)) = 0 for all i ̸= i⋆ .
Combining it with the stationarity condition for arm i⋆ , we obtain

0 = λ− αi⋆ −
∑
i ̸=i⋆

γi
∂C(i⋆, i; ν, w)

∂wi⋆
hence 0 = λ

ϕ
− αi⋆

ϕ
−
∑
i ̸=i⋆

γi

C(i⋆, i; ν, w)
∂C(i⋆, i; ν, w)

∂wi⋆
.

Multiplying bywi⋆ andusing thatαi⋆wi⋆ = 0 yields thatwi⋆
λ
ϕ =

∑
i ̸=i⋆ γi

wi⋆
∂C(i⋆,i;ν,w)

∂wi⋆

C(i⋆,i;ν,w) . Similarly,
one can show that 0 = λ−αi−γi

∂C(i⋆,i;ν,w)
∂wi

for all i ̸= i⋆ . Multiplying bywi , using thatαi⋆wi⋆ =

0 and wi
∂C(i⋆,i;ν,w)

∂wi
= C(i⋆, i; ν, w) −wi⋆

∂C(i⋆,i;ν,w)
∂wi⋆

, we obtain wi
λ
ϕ = γi

(
1 −

wi⋆
∂C(i⋆,i;ν,w)

∂wi⋆

C(i⋆,i;ν,w)

)
for

all i ̸= i⋆ . By summing and using that∑i∈[K]wi = 1 (since λ > 0 ), we have λ = ϕ
∑

i ̸=i⋆ γi .
By scaling, we can consider γ̃i = γi(

∑
i ̸=i⋆ γi)−1 for all i ̸= i⋆ , i.e. γ̃ ∈ ΣK−1 .

This completes the proof of the necessity of the conditions. Those conditions are also
sufficient since it is direct to construct dual variables such that the KKT conditions hold.
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B.4 Proof of Lemma 2.5

B.4 Proof of Lemma 2.5

The proof boils down to giving an explicit dual vector γ ∈ ΣK−1 for Lemma 2.4 by using the
KKT conditions. It crucially relies on the fact that the optimal allocation can be shown to
have dense support (i.e. mini∈[K]wi > 0 ), hence αi = 0 for all i ∈ [K] . Therefore, we have
λ = γi

∂C(i⋆,i;ν,w)
∂wi

for all i ̸= i⋆, and λ =
∑

i ̸=i⋆ γi
∂C(i⋆,i;ν,w)

∂wi⋆
. Plugging in the last equation the

explicit formula of γ given by the first Z − 1 equations allows us to conclude the proof by
using (2.12). This completes the proof of the necessity of the conditions. Those conditions are
also sufficient since it is direct to construct dual variables such that the KKT conditions hold.

B.5 Proof of Lemma 2.11

Definition B.2 introduces the notion of asymptotically tight threshold. All the thresholds proposed
in Kaufmann and Koolen [2021] for one-parameter exponential families are asymptotically
tight, including the stopping threshold (2.3).

Definition B.2. A threshold c : N × (0, 1] → R+ is said to be asymptotically tight if there exists
α ∈ [0, 1) , δ0 ∈ (0, 1] , functions f, T : (0, 1] → R+ and C independent of δ satisfying: (1) for all
δ ∈ (0, δ0] and n ≥ T (δ) , then c(n, δ) ≤ f(δ) + Cnα , (2) lim supδ→0 f(δ)/ log(1/δ) ≤ 1 and
(3) lim supδ→0 T (δ)/ log(1/δ) = 0 .

We only sketch the proof of the first result involving T ⋆(ν) , since the same argument will
yield the result involving T ⋆

β (ν) . Let γν > 0 such that: for all γ ∈ (0, γν ] , Eν [Tγ(w⋆)] < +∞
with Tγ(w) as in (2.21). Let T γ(w) := inf {T ≥ 1 | ∀n ≥ T, ∥Nn − w∥∞ ≤ γ} . Then, we have
Eν [T γ(w⋆)] < +∞ for γ ∈ (0, γν/K] . Let ζ > 0 . By continuity of (κ,w) → C(i, j;κ,w) and
κ → i⋆(m(κ)) , there exists γζ > 0 such that: max{∥w − w⋆∥∞ , ∥m(κ) − µ∥∞} ≤ γζ implies
that i⋆(m(κ)) = {i⋆} and minj ̸=i⋆ C(i⋆, i;κ,w) ≥ (1 − ζ)T ⋆(ν)−1 . Since mini∈[K]w

⋆
i > 0 and

Eν [T γ(w⋆)] < +∞ , arms are sampled linearly, hence the empirical means µn converges towards
the true mean µ . Therefore, there exists T̂γ,ζ(w⋆) with E[T̂γ,ζ(w⋆)] < +∞ such that

∀n ≥ T̂γ,ζ(w⋆), ı̂n = i⋆ and min
j ̸=ı̂n

Wn(̂ın, i) ≥ n(1 − ζ)T ⋆(ν)−1 .

Let α ∈ [0, 1) , δ0 ∈ (0, 1] , functions f, T̄ : (0, 1] → R+ and C as in the definition of an asymp-
totically tight threshold (Definition B.2). Let δ ≤ δ0 , ξ ∈ (0, 1) and T ≥ max{T̂γ,ζ(w⋆), T̄ (δ)}/ξ
. By definition of the GLR stopping rule (2.2) with an asymptotically tight threshold, we have

min {τδ, T} ≤ ξT +
T∑

n=ξT

1 (τδ > n) ≤ ξT +
T∑

n=ξT

1

(
min
j ̸=i⋆

Wn(i⋆, j) ≤ c(n− 1, δ)
)
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≤ ξT +
T∑

n=ξT

1
(
n(1 − ζ)T ⋆(ν)−1 ≤ f(δ) + CTα

)
≤ ξT + T ⋆(ν)(1 − ζ)−1(f(δ) + CTα) .

Let Tζ(δ) = inf
{
T ≥ 1 | T ⋆(ν)(1 − ζ)−1(1 − ξ)−1(f(δ) + CTα) ≤ T

} . Then, τδ ≤ T for all
T ≥ max{Tζ(δ), T̂γ,ζ(w⋆)/ξ, T̄ (δ)/ξ} , hence Eν [τδ] ≤ Tζ(δ) + Eν [Tγ,ζ(w⋆)]/ξ + T̄ (δ)/ξ . Then,

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ lim sup

δ→0

Tζ(δ)
log(1/δ) ≤ T ⋆(ν)

(1 − ζ)(1 − ξ) ,

where the last inequality is a known inversion result (see e.g. Lemma 13 in Jourdan et al. [2022]).
Letting ζ and ξ go to zero concludes the proof.

B.6 Proof of Lemma 2.16

We start by presenting the result when using randomization to reach the target allocation, then
sketch the one when using tracking for a fully deterministic algorithm. The result has the same
proof for both optimal design IDS and fixed design β since they both satisfy Lemma 2.12.

Randomized When using randomization, Lemma B.3 gives a strictly positive lower bound
on the probability of sampling the least sampled arm in the effective leader/challenger pair.

Lemma B.3. Assume that the target satisfies Lemma 2.12. Then, for all n > K ,
P|n

(
In ∈ arg min

i∈{B̂n,Ĉn}Nn,i

)
≥ βmin/K

2 .

Proof. Assume thatN
n,B̂n

≤ N
n,Ĉn

, hence βn(B̂n, Ĉn) ≥ βmin by Lemma 2.12. Then, using that
P(In = i) can be expressed as (2.17), we have

P|n(In = B̂n) ≥ βn(B̂n, Ĉn)P|n(Bn = B̂n)P|n(Cn = Ĉn | Bn = B̂n) ≥ βmin
K(K − 1) ,

where the last inequality is obtained by using the definition of (B̂n, Ĉn) in (2.23) as a maximizer
of probabilities that sum to one. The case N

n,B̂n
> N

n,Ĉn
can be done similarly. ■

Let βmin , L0 , L1 as in Lemma 2.12, Properties 2.14 and 2.15. Let L2 such that ⌊L⌋ ≥ KL3/4

for all L ≥ L2 . Let L ≥ max{L4/3
0 , L1, L2} .

Suppose towards contradiction that UL
⌊KL⌋ ̸= ∅ . For any 1 ≤ n ≤ ⌊KL⌋ , we have UL

n ̸= ∅
, hence V L

n ∩ {B̂n, Ĉn} ̸= ∅ by using Assumption 2.13 with Properties 2.14 and 2.15. Using
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B.6 Proof of Lemma 2.16

the pigeonhole principle, there exists some i ∈ [K] such that N⌊L⌋,i ≥ L3/4 . Thus, we have∣∣∣V L
⌊L⌋

∣∣∣ ≤ K − 1 . Our goal is to show that
∣∣∣V L

⌊2L⌋

∣∣∣ ≤ K − 2 . A sufficient condition is that one
arm in V L

⌊L⌋ is pulled at least L3/4 times between ⌊L⌋ and ⌊2L⌋ − 1 . Using Lemma 2.9 and
V L

n ∩ {B̂n, Ĉn} ⊆ V L
⌊L⌋ and , we obtain

⌊2L⌋−1∑
n=⌊L⌋

1
(
In ∈ V L

⌊L⌋

)
≥

⌊2L⌋−1∑
n=⌊L⌋

P|n
(
In ∈ V L

n ∩ {B̂n, Ĉn}
)

− 2WK

√
(⌊2L⌋ + 1) log(e+ ⌊2L⌋ + 1)

≥ βmin(⌊2L⌋ − ⌊L⌋)/K2 − 2WK

√
(⌊2L⌋ + 1) log(e+ ⌊2L⌋ + 1) ≥ KL3/4 ,

where the second inequality uses that {In ∈ arg min
i∈{B̂n,Ĉn}Nn,i} ⊆ {In ∈ V L

n ∩ {B̂n, Ĉn}}
and Lemma B.3. The last inequality is obtained for L ≥ L3 + 1 with

L3 = sup
{
L ∈ N | βmin(⌊2L⌋ − ⌊L⌋)/K2 − 2WK

√
(⌊2L⌋ + 1) log(e+ ⌊2L⌋ + 1) < KL3/4

}
,

which satisfies that Eν [L3] < +∞ by Lemma 2.9 since it can be upper bounded by a polynomial
function ofWK . Therefore, we have shown that

∣∣∣V L
⌊2L⌋

∣∣∣ ≤ K − 2 .
By induction, there exists L4 with Eν [L4] < +∞ such that, for all L ≥ L4 , we have∣∣∣V L

⌊kL⌋

∣∣∣ ≤ K−k for any 1 ≤ k ≤ K , henceUL
⌊KL⌋ = ∅ for allL ≥ L5 = max{L4/3

0 , L1, L2, L3, L4}
. Defining N1 = KL5 , we have Eν [N1] < +∞ . For all n ≥ N1 , taking L = n/K yields
U

n/K
n = UL

⌊KL⌋ = ∅ , hence mini∈[K]Nn,i ≥
√
n/K .

Combining Lemma 2.9 with the above result, we have

|µn,i − µi| ≤ Wµ(K/n)1/4
√

log(e+
√
n/K) ≤ min

i ̸=i⋆
(µi⋆ − µi)/4 .

The last inequality holds for n ≥ N2 which also satisfies Eν [N2] < +∞ since it is defined as

N2 = sup{n > 1 | Wµ(K/n)1/4
√

log(e+
√
n/K) > min

i ̸=i⋆
(µi⋆ − µi)/4} .

Taking N0 = max{N1, N2} concludes the proof for randomization.

Deterministic When the algorithm is fully deterministic, we have (Bn, Cn) = (B̂n, Ĉn) .
Suppose that we have ∑⌊2L⌋−1

t=⌊L⌋ 1
(
{Bt, Ct} ⊆ V L

t

)
≥ KL3/4 . Then, ∑⌊2L⌋−1

t=⌊L⌋ 1
(
It ∈ V L

⌊L⌋

)
≥

KL3/4 . In the following, we consider that∑⌊2L⌋−1
t=⌊L⌋ 1

(
{Bt, Ct} ⊆ V L

t

)
< KL3/4 does not hold,

hence using that Bt ∈ V L
t or Ct ∈ V L

t

⌊2L⌋−1∑
t=⌊L⌋

(
1
(
Bt ∈ V L

t , Ct /∈ V L
t

)
+ 1

(
Bt /∈ V L

t , Ct ∈ V L
t

))
> ⌊2L⌋ − ⌊L⌋ −KL3/4 .
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We distinguish between two cases.

Case 1:
⌊2L⌋−1∑
t=⌊L⌋

1
(
Bt ∈ V L

t , Ct /∈ V L
t

)
>
(
⌊2L⌋ − ⌊L⌋ −KL3/4

)
/2 ,

Case 2:
⌊2L⌋−1∑
t=⌊L⌋

1
(
Bt /∈ V L

t , Ct ∈ V L
t

)
>
(
⌊2L⌋ − ⌊L⌋ −KL3/4

)
/2 .

Using Lemma 2.12, we obtain βt(Bt, Ct) ≥ βmin when Bt ∈ V L
t , Ct /∈ V L

t , and 1 − βt(Bt, Ct) ≥
βmin when Bt /∈ V L

t , Ct ∈ V L
t .

Case 1. Using Lemma 2.6 and the above, we obtain

⌊2L⌋−1∑
t=⌊L⌋

1
(
It ∈ V L

⌊L⌋

)
≥

∑
i∈V L

⌊L⌋

∑
j ̸=i

⌊2L⌋−1∑
t=⌊L⌋

1 (It = i, (Bt, Ct) = (i, j))

≥
∑

i∈V L
⌊L⌋

∑
j ̸=i

⌊2L⌋−1∑
t=⌊L⌋

βt(i, j)1 ((Bt, Ct) = (i, j)) −K2

≥
⌊2L⌋−1∑
t=⌊L⌋

βt(Bt, Ct)1
(
Bt ∈ V L

t , Ct /∈ V L
t

)
−K2

≥ βmin
(
⌊2L⌋ − ⌊L⌋ −KL3/4

)
/2 −K2 ≥ KL3/4 ,

where the last inequality is obtained for L ≥ L6 + 1 with

L6 = sup
{
L ∈ N | βmin

(
⌊2L⌋ − ⌊L⌋ −KL3/4

)
/2 −K2 < KL3/4

}
.

Therefore, there exists i ∈ V L
⌊L⌋ which is sampled L3/4 times between ⌊L⌋ and ⌊2L⌋ − 1 .

Case 2. Using Lemma 2.6 and the same argument as above, we obtain

⌊2L⌋−1∑
t=⌊L⌋

1
(
It ∈ V L

⌊L⌋

)
≥

⌊2L⌋−1∑
t=⌊L⌋

(1 − βt(Bt, Ct))1
(
Bt /∈ V L

t , Ct ∈ V L
t

)
−K2

≥ βmin
(
⌊2L⌋ − ⌊L⌋ −KL3/4

)
/2 −K2 ≥ KL3/4 ,

where the last inequality is obtained for L ≥ L6 + 1 . Therefore, there exists i ∈ V L
⌊L⌋ which is

sampled L3/4 times between ⌊L⌋ and ⌊2L⌋ − 1 .
Therefore, we have shown that

∣∣∣V L
⌊2L⌋

∣∣∣ ≤ K − 2 , and we conclude the proof similarly.
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B.7 Proof of Lemma 2.18

We start by presenting the result when using randomization to reach the target allocation, then
sketch the one when using tracking for a fully deterministic algorithm.

Randomized optimal design IDS Let N0 and (g1, N1) as in (2.22) and Property 2.17. Let
M ≥ max{N0, N1} and n > M . Using Lemma 2.9, maxi∈[K] E[NM,i] ≤ M and P|t(Bt ̸= i⋆) ≤
g1(t) , we can show that∣∣∣∣∣Nn,i −

n−1∑
t=M

(1 − βt(i⋆, i))P|t((Bt, Ct) = (i⋆, i))
∣∣∣∣∣ ≤ M +

n−1∑
t=M

g1(t) +WK

√
(n+ 1) log(e+ n)∣∣∣∣∣∣Nn,i⋆ −

n−1∑
t=M

∑
j ̸=i⋆

βt(i⋆, j)P|t((Bt, Ct) = (i⋆, j))

∣∣∣∣∣∣ ≤ M +
n−1∑
t=M

g1(t) +WK

√
(n+ 1) log(e+ n) .

For all n > M , let Hn = N2
n,i⋆ −

∑
j ̸=i⋆ N2

n,j and Gn =

n−1∑
t=M

∑
j ̸=i⋆

βt(i⋆, j)P|t((Bt, Ct) = (i⋆, j))

2

−
∑
j ̸=i⋆

(
n−1∑
t=M

(1 − βt(i⋆, j))P|t((Bt, Ct) = (i⋆, j))
)2

Since |a2 − b2| ≤ 2 max{|a|, |b|}|a− b| , we obtain

|Hn| ≤ |Hn −Gn| + |Gn| ≤ |Gn| + 2K(n− 1)
(
M +

n∑
t=M

g1(t) +WK

√
(n+ 1) log(e+ n)

)
.

Since |Gn| ≤
∑n−1

t=M+1 |Gt+1 −Gt| + |GM+1| and |GM+1| ≤ K , we study the increments,

Gn+1 −Gn

2 =

∑
j ̸=i⋆

βn(i⋆, j)P|n((Bn, Cn) = (i⋆, j))

n−1∑
t=M

∑
j ̸=i⋆

βt(i⋆, j)P|t((Bt, Ct) = (i⋆, j))


−
∑
j ̸=i⋆

(1 − βn(i⋆, j))P|n((Bn, Cn) = (i⋆, j))
(

n−1∑
t=M

(1 − βt(i⋆, j))P|t((Bt, Ct) = (i⋆, j))
)

∑
j ̸=i⋆

βn(i⋆, j)P|n((Bn, Cn) = (i⋆, j))

2

/2 −
∑
j ̸=i⋆

(
(1 − βn(i⋆, j))P|n((Bn, Cn) = (i⋆, j))

)2
/2 .

The optimal design IDS ensures that Nn,i⋆βn(i⋆, j) = (1 − βn(i⋆, j))Nn,j since µn,i⋆ > µn,j due
to (2.22). Leveraging the above results, a direct upper bound yields

|Gn+1 −Gn| ≤ 4
(
M +

n−1∑
t=M

g1(t) +WK

√
(n+ 1) log(e+ n)

)
+K .

197



Complements on Chapter 2

Therefore, we have shown that

|Hn| ≤ 2(K + 2)(n− 1)

M +
∑

t∈[n−1]
g1(t) +WK

√
(n+ 1) log(e+ n)

+Kn .

Let γ > 0 . Therefore, this concludes the proof by taking N2 = X0 + 1 with

X0 = sup

n | γ(n− 1)
2(K + 2) < max{N0, N1} + 1 +

∑
t∈[n−1]

g1(t) +WK

√
(n+ 1) log(e+ n)


which satisfiesEν [X0] < +∞ since it is atmost a linear function ofmax{N0, N1} and polynomial
function ofWK (Lemma 2.9).

For fixed design β , the result is a direct consequence of the first upper bound on Nn,i⋆ and
βt(i⋆, j) = β for allM ≤ t ≤ n − 1 , and∑n−1

t=M P|t(Bt = i⋆) ≥ n −
∑n−1

t=M P|t(Bt ̸= i⋆) − M by
Property 2.17.

Deterministic optimal design IDS Since the algorithm is fully deterministic, Property 2.17
can be rewritten: for n large enough, Bn = i⋆ . Therefore, using Lemma 2.6, we obtain

max
{

max
i ̸=i⋆

∣∣∣∣∣Nn,i −
n−1∑
t=M

(1 − βt(i⋆, i))1 (Ct = i)
∣∣∣∣∣ ,
∣∣∣∣∣Nn,i⋆ −

n−1∑
t=M

βt(i⋆, Ct)
∣∣∣∣∣
}

≤ 2M +K .

As above, we can show that |Hn| is small if |G̃n+1 − G̃n| is small, where

G̃n =
(

n−1∑
t=M

βt(i⋆, Ct)
)2

−
∑
j ̸=i⋆

(
n−1∑
t=M

(1 − βt(i⋆, i))1 (Ct = i)
)2

.

It is direct to show that |G̃n+1 − G̃n| ≤ 2(2M + K + 3/2) by using that Nn,i⋆βn(i⋆, j) =
(1 − βn(i⋆, j))Nn,j . This allows us to conclude the proof similarly.

For fixed design β , the result is a direct consequence of the first upper bound on Nn,i⋆ and
βt(i⋆, Ct) = β for allM ≤ t ≤ n− 1 .

B.8 Proof of Lemma 2.19

Using Lemma 2.18 for γ ∈ {1/2, (32(K − 1))−1} yields the upper/lower bound.

1/2 ≥
(
Nn,i⋆

n− 1

)2
−
∑
i ̸=i⋆

(
Nn,i

n− 1

)2
≥
(
Nn,i⋆

n− 1

)2
−
(

1 − Nn,i⋆

n− 1

)2
= 2Nn,i⋆

n− 1 − 1 ,
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(
Nn,i⋆

n− 1

)2
≥ − 1

32(K − 1) + 1
K − 1

(
1 − Nn,i⋆

n− 1

)2
≥ 1

32(K − 1) .

Then, using Lemma 2.18 for γ
32(K−1) and Nn,i⋆/(n− 1) ≥ (4

√
2(K − 1))−1 ,

∣∣∣∣∣∣1 −
∑
i ̸=i⋆

(
Nn,i

Nn,i⋆

)2
∣∣∣∣∣∣ =

(
n− 1
Nn,i⋆

)2
∣∣∣∣∣∣
(
Nn,i⋆

n− 1

)2
−
∑
i ̸=i⋆

(
Nn,i

n− 1

)2
∣∣∣∣∣∣ ≤ 32(K − 1) γ

32(K − 1) = γ .

B.9 Proof of Lemma 2.21

We only sketch the proof of the first result involving Tγ(w⋆) , since the same argument yields
the one for Tγ(w⋆

β) . We start by presenting the result when using randomization to reach the
target allocation, then sketch the one when using tracking for a fully deterministic algorithm.

Randomized optimal design IDS Let N0 , (g1, N1) , N2 , (γ0, g3, N3) and N4 as in (2.22),
Property 2.17, Lemma 2.18, Property 2.20 and Lemma 2.19. LetM ≥ max{N0, N1, N2, N3, N4}
, γ ∈ (0, γ0] , n > M

∀i ̸= i⋆, tn,i(γ) = max {M,max {t ∈ {M, · · · , n− 1} | Nt,i/Nt,i⋆ < w⋆
i /w

⋆
i⋆ + γ/4}} .

Combining (2.17), Properties 2.17 and 2.20 and the definition of tn,i(γ) , one can show that

E[Nn,i] ≤ E[Ntn,i(γ),i] +
n−1∑

t=tn,i(γ)
P|t(Bt ̸= i⋆) +

n−1∑
t=tn,i(γ)

P|t(Ct = i | Bt = i⋆)

≤ E[Ntn,i(γ),i⋆ ] max
{
M,

(
w⋆

i

w⋆
i⋆

+ γ/4
)}

+
∑

t∈[n−1]
g1(t) +

∑
t∈[n−1]

g3(t) .

Using ∥E[Nn] −Nn∥∞ ≤ WK

√
n+ 1 log(e+ n) (Lemma 2.9) and Nn,i⋆/n ≥

(
4
√

2(K − 1)
)−1

(Lemma 2.19), we can show that

∃N5 s.t. Eν [N5] < +∞, ∀n ≥ N5, Nn,i/Nn,i⋆ ≤ w⋆
i /w

⋆
i⋆ + γ/2 .

Using this result with
∣∣∣1 −

∑
i ̸=i⋆ (Nn,i/Nn,i⋆)2

∣∣∣ ≤ γ/4 (Lemma 2.19), we can show that

∃N6 s.t. Eν [N6] < +∞, ∀n ≥ N6, Nn,i/Nn,i⋆ ≥ w⋆
i /w

⋆
i⋆ − γ .

Therefore, we have Tγ(w⋆) ≤ max{N0, N1, N2, N3, N4, N5, N6} , hence Eν [Tγ(w⋆)] < +∞ .
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Deterministic optimal design IDS Since the algorithm is fully deterministic, Properties 2.17
and 2.20 can be rewritten: for n large enough, Bn = i⋆ and, for arm i which is overshooting the
ratio optimal ratio, we have Cn ̸= i . Therefore, we obtain directly that

Nn,i ≤ Ntn,i(γ),i ≤ Ntn,i(γ),i⋆ max
{
M,

(
w⋆

i

w⋆
i⋆

+ γ/4
)}

≤ Nn,i⋆ max
{
M,

(
w⋆

i

w⋆
i⋆

+ γ/4
)}

.

Therefore, we can conclude similarly.

B.10 Proof of Lemma 2.22

Let SL
n and I⋆

n as in (2.24) such that SL
n \ I⋆

n ̸= ∅ . When SL
n \ I⋆

n = ∅ , the statement is true.
Suppose that SL

n \ I⋆
n ̸= ∅ . Let γ > 0 . Using Lemma 2.9, there exists L4 = Poly(Wµ) (hence

Eν [(L4)α] < +∞ for all α > 0 ) such that for all L ≥ L4 and all k ∈ SL
n , |µn,k − µk| ≤ γ . Let

L ≥ L4 and (i, j) ∈ I⋆
n ×

(
SL

n \ I⋆
n

)
. By definition ofWn(i, j) in (2.1), we obtain

Wn(i, j) ≥ LC(i, j; νn, 1K) ≥ LCν,γ with Cν,γ = min
(i,j):µi>µj

inf
κ:maxk∈{i,j} |m(κ)k−µk|≤γ

C(i, j;κ, 1K) ,

where the last inequality takes the infimum. Since κ → C(i, j;κ, 1K) is continuous with strictly
positive value for (i, j) such thatm(κ)i > m(κ)j , there exists γ such that Cν,γ > 0 .

B.11 Proof of Lemma 2.23

Let (i, j) ∈ SL
n × SL

n . By definition and taking u = µn,i yields

Wn(i, j) ≤ Nn,jK+
inf(νn,j , µn,i) ≤ LK+

inf(νn,j , µn,i) .

For Gaussian distributions with unit variance, we have√
2K+

inf(νn,j , µn,i) = µn,i − µn,j ≤ µi − µj + 2Wµ

√
log(e+ 1) ,

where the inequality uses Lemma 2.9 and x →
√

log(e+ x)/x is decreasing.

B.12 EB Leader

Lemma B.4. The EB leader satisfies Properties 2.14 and 2.17.
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B.13 TC Challenger

Proof. Let L4 as in Lemma 2.22, and L ≥ L4 . Let SL
n and I⋆

n as in (2.24) such that SL
n \ I⋆

n ̸= ∅
. When SL

n \ I⋆
n = ∅ , the statement is true. Suppose that SL

n \ I⋆
n ̸= ∅ and B̂n ∈ SL

n . Then,
Wn(i, j) ≥ LCν for all (i, j) ∈ I⋆

n ×
(
SL

n \ I⋆
n

)
. Suppose towards contradiction that B̂EB

n /∈ I⋆
n

. Therefore,Wn(i, B̂EB
n ) ≥ LCν > 0 for all i ∈ I⋆

n . Since the leader is deterministic, we have
BEB

n = B̂EB
n . Since BEB

n ∈ arg maxi∈[K] µn,i , we haveWn(i, B̂EB
n ) = 0 . This is a contradiction,

hence B̂EB
n ∈ I⋆

n .
Let N0 as in (2.22), and n ≥ N0 . Then, P|n(BEB

n ̸= i⋆) ≤ P|n(i⋆(µn) ̸= {i⋆}) = 0 . ■

B.13 TC Challenger

Lemma B.5. The TC challenger satisfies Property 2.15.

Proof. Let B̂n be an effective leader satisfying Property 2.14. Let L0 , L4 and L5 as in Prop-
erty 2.14, Lemmas 2.22 and 2.23, and L ≥ max{L4/3

0 , L
4/3
4 , L2

5} . Let n such that UL
n ̸= ∅ and

B̂n ∈ V L
n , hence B̂n ∈ J ⋆

n = arg max
i∈V L

n
µi . When ĈTC

n ∈ J ⋆
n \

{
B̂n

}
, the statement is true.

Suppose that ĈTC
n /∈ J ⋆

n \
{
B̂n

}
. Then,

∀(i, j) ∈ J ⋆
n ×

(
V L

n \ J ⋆
n

)
, Wn(i, j) ≥ L3/4Cν ,

∀(i, j) ∈ UL
n × UL

n , Wn(i, j) ≤
√
L(Dν +D0Wµ)2 .

Let L6 = C−4
ν (Dν + D0Wµ)8 + 1 which satisfies Eν [L6] < +∞ by Lemma 2.9. Let L7 =

max{L4/3
0 , L

4/3
4 , L2

5, L6} , which satisfies Eν [L7] < +∞ . Then, for all L ≥ L7 , we have

∀(i, k, j) ∈ J ⋆
n × UL

n ×
(
V L

n \ J ⋆
n

)
, Wn(i, j) > Wn(i, k) .

As B̂n ∈ J ⋆
n and ĈTC

n /∈ J ⋆
n \

{
B̂n

}
, the definition ĈTC

n ∈ arg min
j ̸=B̂n

Wn(B̂n, j) yields
that ĈTC

n ∈ V L
n . Otherwise, the strict inequality wields a contradiction. This concludes the

proof. ■

Lemma B.6. The TC challenger satisfies Property 2.20.

Proof. We only sketch the proof of the optimal design IDS since the same argument yields the
one for fixed β . Let γ > 0 . LetN0 , (g1, N1) ,N2 andN4 as in (2.22), Property 2.17, Lemmas 2.18
and 2.19. Let n ≥ max{N0, N1, N2, N4} . Let i ̸= i⋆ such that Nn,i/Nn,i⋆ ≥ w⋆

i /w
⋆
i⋆ + γ .
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Suppose towards contradiction that Nn,j/Nn,i⋆ > w⋆
j/w

⋆
i⋆ for all j ̸= i⋆ . Then, we have

γ̃ ≥
∑
j ̸=i⋆

(
Nn,j

Nn,i⋆

)2

− 1 ≥
(
w⋆

i

w⋆
i⋆

+ γ

)2

−
(
w⋆

i

w⋆
i⋆

)2

= γ

(
γ + 2 w

⋆
i

w⋆
i⋆

)
.

Taking γ̃ small enough, e.g. γ̃ < γ2 , yields a contradiction. Therefore, there exists j /∈ {i, i⋆}
such that Nn,j/Nn,i⋆ ≤ w⋆

j/w
⋆
i⋆ . Since CTC

n ∈ arg minj ̸=Bn
Wn(Bn, j) andWn(i, j) as in (2.1),

P|n(CTC
n = i | Bn = i⋆) = 0 ⇐= C(i⋆, i; νn, Nn/Nn,i⋆)

C(i⋆, j; νn, Nn/Nn,i⋆) > 1 .

Using that w → C(i⋆, i;κ,w) is increasing and the equality at equilibrium (Lemma 2.10),

C(i⋆, i; νn, Nn/Nn,i⋆)
C(i⋆, j; νn, Nn/Nn,i⋆) ≥ C(i⋆, i; νn, w

⋆/w⋆
i⋆ + γ1i)

C(i⋆, i; ν, w⋆/w⋆
i⋆)

C(i⋆, j; ν, w⋆/w⋆
i⋆)

C(i⋆, j; νn, w⋆/w⋆
i⋆)

=
(
µn,i⋆ − µn,i

µi⋆ − µi

µi⋆ − µj

µn,i⋆ − µn,j

)2 1 + w⋆
i⋆/w⋆

i

1 + (w⋆
i /w

⋆
i⋆ + γ)−1 .

The equality holds for Gaussian distribution with unit variance. Using Lemma 2.9 and (2.22),
∥µn − µ∥∞ ≤ Wµ(K/n)1/4

√
log

(
e+

√
n/K

)
. Therefore, there exists N5 = Poly(Wµ) (hence

Eν [N5] < +∞ ) such that, for all n ≥ N5 ,

µn,i⋆ − µn,i

µi⋆ − µi

µi⋆ − µj

µn,i⋆ − µn,j
≥
(

1 + w⋆
i⋆/w⋆

i

1 + (w⋆
i /w

⋆
i⋆ + γ)−1

)−1/4

.

This concludes the proof since

C(i⋆, i; νn, Nn/Nn,i⋆)
C(i⋆, j; νn, Nn/Nn,i⋆) ≥

√
1 + w⋆

i⋆/w⋆
i

1 + (w⋆
i /w

⋆
i⋆ + γ)−1 > 1 .

■

B.14 Proof of Lemma 2.27

Let t ∈ [n5/6, n] such that Bt = k with k ̸= i⋆ . Then,

µi⋆ ≤ µt,i⋆ +
√

3 log(t)/Nt,i⋆ ≤ µt,k +
√

3 log(t)/Nt,k ≤ µk +
√

12 log(t)/Nt,k ,

hence Nt,k ≤ 12 log(n)(µi⋆ − µk)−2 . Using Lemma 2.7 with β = 1/2 , the leader is sampled
half the time. Since Nt,k is bounded and incremented by one-half of the time, this event can
not occur too often. Summing over k ̸= i⋆ concludes the proof.
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Appendix C

Complements on Chapter 3

C.1 Proof of Lemma 3.4

As in Section 1.4.2, for Gaussian with unknown variance, we have

{τδ < +∞} ∩ Eerr
µ (τδ) ⊆

⋃
n∈N

⋃
i ̸=i⋆

 ∑
k∈{i,i⋆}

Nn,k

2 log
(
1 + (µn,k − µk)2/σ2

n,k

)
≤ ci,i⋆(Nn, δ)

 .

The family of thresholds in (3.7) is obtained by solving an optimization problem at each
time n and for all i ̸= i⋆ solutions. Let C,D ∈ (R⋆

+)2 and N ∈ (N)2 ,

maximize
∑

k∈{1,2}

Nk

2 log (1 + yk)

such that ∀k ∈ {1, 2}, yk ≥ 0, xkyk ≤ Ck, xk ≥ Dk .

Since y 7→ log (1 + y) is concave and increasing, y 7→
∑

k∈{1,2}Nk log (1 + yb) is concave and
increasing in each of its coordinates. Since the constraints and the objective are separate between
each coordinate, the maximum is achieved at Ck/Dk and has a value

∑
k∈{1,2}

Nk

2 log
(

1 + Ck

Dk

)
.

Let n and i ̸= i⋆ . The variables yk and xk replace (µn,i − µi)2/σ2
n,i and σ2

n,i/σ
2
i . Then, we

need to specify the constraint imposed by concentration, i.e. specify (Dk, Ck) . Combining the
lower tail concentration on the empirical variance (Corollary C.8) and the upper and lower
tail concentration of the empirical mean (Lemma C.9), we obtain that with probability greater
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than 1 − δ
K−1 , for all k ∈ {i, i⋆} and all n ≥ maxk∈{i,i⋆} tk(δ) ,

(µn,k − µk)2 ≤ σ2
kεµ(Nn,k, δ) ,

σ2
n,k ≥ σ2

k(1 − ε−,σ(Nn,k − 1, δ)) .

where εµ , ε−,σ and tk are defined as in Lemma 3.4. Using Lemma A.1, this initial time
condition ensures that 1 − ε−,σ(Nn,k − 1, δ) > 0 . SinceW 0 has values in (0, 1) , we obtain that
ε−,σ(n, δ) ∈ (0, 1) . Taking a union bound over i ̸= i⋆ concludes the proof.

C.1.1 Sub-Exponential Processes

We prove time-uniform and fixed-time concentration results for 1-sub-ψE,c process with vari-
ance process Vt = ct and 1-sub-ψE,−c process with variance process Vt = ct . The concept
of sub-ψ process (Definition C.1) was introduced in Howard et al. [2020]. This concept is
particularly useful for deriving time-uniform concentration results.

Definition C.1. Let (St)t∈T ∪{0} and (Vt)t∈T ∪{0} be two real-valued processes adapted to an
underlying filtration (Ft)t∈T ∪{0} with S0 = 0 and V0 = 0 a.s. and Vt ≥ 0 a.s. for all t ∈ T . For a
function ψ : [0, λmax) 7→ R and a scalar l0 ∈ [1,+∞) , we say that (St) is l0-sub-ψ with variance
process (Vt) if, for each λ ∈ [0, λmax) , there exists a supermartingale (Lt(λ))t∈T ∪{0} with respect
to (Ft) such that L0(λ) ≤ l0 a.s. and

exp {λSt − ψ(λ)Vt} ≤ Lt(λ) a.s. for all t ∈ T .

Lemma C.2 (Ville’s inequality). Let P0[·] = P0[· | F0] . Let T ⊆ N , such that |T | = ∞ . If
(Lt)t∈T ∪{0} is a non-negative supermartingale with respect to the filtration (Ft)t∈T ∪{0} , then

∀a > 0, P0 (∃t ∈ T : Lt ≥ a) ≤ L0/a .

Since we aim at deriving one-sided bounds on scalar martingales, we have l0 = 1 . Using
Ville’s inequality (Lemma C.2) on a sub-ψ process yields time-uniform concentration results.
Let (St) be a 1-sub-ψ with variance process (Vt) , then for all λ ∈ [0, λmax) , with probability
greater than 1 − δ ,

∀t ∈ T , λSt − ψ(λ)Vt < log (1/δ) .

204



C.1 Proof of Lemma 3.4

Let λ ∈ [0, λmax) . Direct manipulations show the above result,

P (∃t ∈ T : λSt − ψ(λ)Vt ≥ log (1/δ)) ≤ P (∃t ∈ T : Lt(λ) ≥ 1/δ) ≤ δ .

In the following, we are interested by 1-sub-ψE,c processes for c ∈ R , where ψE,c is defined
as

∀λ ∈ [0, 1/(c ∨ 0)) , ψE,c(λ) = − log(1 − cλ) − cλ

c2 . (C.1)

The derived upper and lower tails concentrations involve the positive ( i = 0 ) and negative (
i = −1 ) Lambert’s branchesWi solutions ofW (x)eW (x) = x . We refer the reader toAppendixA
for mode details and corresponding technical results.

Upper tail concentration We derive time-uniform and fixed-time upper tail concentration for
1-sub-ψE,c process with variance process Vt = ct . While the time-uniform result requires using
the peeling method, the proof of the fixed-time concentration is simpler. To use the peeling
method, we need to control the deviation of the process on slices of time (Lemma C.3).

Lemma C.3. Let c > 0 and St a 1-sub-ψE,c process with variance process Vt = ct . Let N > 0 .
For all x > 1 , there exists λ = λ(x) such that for all t ≥ N ,

{St + t ≥ tx} ⊆
{
λSt − ctψE,c(λ) ≥ N

c
(h (x) − 1)

}

where λ(x) = arg maxλ∈[0,1/c)

(
xλ+ log(1−cλ)

c

)
and h(x) = x− log(x) for x > 1 .

Proof. Defining ψU (λ) = λ+ cψE,c(λ) = − log(1−cλ)
c and λ(x) = arg maxλ∈[0,1/c) xλ−ψU (λ) , we

have xλ(x) −ψU (λ(x)) = ψ∗
U (x) where ψ∗

U is the convex conjugate of ψU . Note that ψ∗
U (x) ≥ 0

(see below), hence tψ∗
U (x) ≥ Nψ∗

U (x) for t ≥ N . Direct computations yield

St + t ≥ tx ⇐⇒ λSt − ctψE,c(λ) ≥ txλ− t(λ+ cψE,c(λ))

=⇒ λSt − ctψE,c(λ) ≥ t (xλ− ψU (λ)) = tψ∗
U (x)

=⇒ λSt − ctψE,c(λ) ≥ Niψ
∗
U (x) = N

c
(h (x) − 1)

Note that for f(λ) = λx + log(1−cλ)
c , we have f ′(λ) = x − 1

1−cλ = 0 ⇐⇒ λ = 1
c

(
1 − 1

x

)
and 1

c

(
1 − 1

x

)
∈ [0, 1

c ) ⇐⇒ x > 1 . Since f ′′(λ) = − c
(1−cλ)2 ≤ 0 , the function is concave hence

this is a maximum. This yields that for all x > 1 , ψ∗
U (x) = f(1

c

(
1 − 1

x

)
) = 1

c (x− 1 − log(x)) =
1
c (h(x) − 1) ≥ 0 where h(x) = x− log(x) . ■

205



Complements on Chapter 3

Let η > 0 . Applying Lemma C.3 on slices of time with geometric growth rate (Ni)i∈N with
Ni = (1 + η)i−1 , we obtain Lemma C.4.

Lemma C.4. LetW−1(x) = −W−1(−e−x) for x ≥ 1 , δ ∈ (0, 1) , η > 0 , s > 1 , c > 0 , and ζ
be the Riemann ζ function. Let St a 1-sub-ψE,c process with variance process Vt = ct . Then, with
probability greater than 1 − δ , for all t ∈ N ,

St + t ≤ tW−1

(
1 + c(1 + η)

t

(
log

(
ζ(s)
δ

)
+ s log

(
1 + log(t)

log(1 + η)

)))
.

Proof. Let g(t, δ) such that g(t, δ) ≥ xi(δ) for t ∈ [Ni, Ni+1) and xi(δ) > 1 . Using Lemma C.3
with xi(δ) > 1 and g(t, δ) ≥ xi(δ) on [Ni, Ni+1) , we obtain

P (∃t ∈ N : St + t ≥ tg(t, δ)) ≤
∑
i∈N

P (∃t ∈ [Ni, Ni+1) : St + t ≥ txi(δ))

≤
∑
i∈N

P
(

∃t ∈ [Ni, Ni+1) : λSt − ctψE,c(λ) ≥ Ni

c
(h (xi(δ)) − 1)

)
≤
∑
i∈N

e− Ni
c

(h(xi(δ))−1) ,

where the last inequality uses that St a 1-sub-ψE,c process with variance process Vt = ct .
Taking

g(t, δ) = W−1

(
1 + c(1 + η)

t

(
log

(
ζ(s)
δ

)
+ s log

(
1 + log(t)

log(1 + η)

)))
and xi(δ) = W−1

(
1 + c

Ni
log

(
isζ(s)

δ

))
satisfies the required properties. First, we have xi(δ) > 1

(Lemma A.1). Second, sinceW−1 is increasing on (1,+∞) (Lemma A.1), t ∈ [Ni, Ni+1) and
i = 1 + log(Ni)

log(1+η) , we obtain

g(t, δ) ≥ W−1

1 +
c log

(
ζ(s)

δ

)
+ cs log

(
1 + log(t)

log(1+η)

)
Ni

 ≥ W−1

(
1 + c

Ni
log

(
isζ(s)
δ

))

Using Lemma A.1 for each i ∈ N yields

P (∃t ∈ N : St + t ≥ tg(t, δ)) ≤
∑
i∈N

e− Ni
c

(h(xi(δ))−1) ≤ δ

ζ(s)
∑
i∈N

1
is

= δ

■
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Lower tail concentration We derive time-uniform and fixed-time lower tail concentration for
1-sub-ψE,−c process with variance process Vt = ct . Likewise, we use the peeling method and
control the deviation of the process on slices of time (Lemma C.5).

Lemma C.5. Let c > 0 and −St a 1-sub-ψE,−c process with variance process Vt = ct . Let N > 0
. For all x ∈ (0, 1) , there exists λ = λ(x) such that for all t ≥ N ,

{−St − t ≥ −tx} ⊆
{
λ(−St) − ctψE,−c(λ) ≥ N

c
(h (x) − 1)

}

where λ(x) = arg maxλ∈[0,+∞)

(
−xλ+ log(1+cλ)

c

)
and h(x) = x− log(x) for x ∈ (0, 1) .

Proof. Defining ψL(λ) = −λ+cψE,−c(λ) = − log(1+cλ)
c and λ(x) = arg maxλ∈[0,+∞) −xλ−ψL(λ)

, we have −xλ(x) − ψL(λ(x)) = ψ∗
L (−x) ≥ 0 (see below), hence tψ∗

L (−x) ≥ Nψ∗
L (−x) for

t ≥ N . Direct computations yield

−St − t ≥ −tx ⇐⇒ λ(−St) − ctψE,−c(λ) ≥ −txλ− t(−λ+ cψE,−c(λ))

=⇒ λ(−St) − ctψE,−c(λ) ≥ t (−xλ− ψL(λ)) = tψ∗
L (−x)

=⇒ λ(−St) − ctψE,−c(λ) ≥ Nψ∗
L (−x) = N

c
(h (x) − 1)

Note that for f(λ) = −λx+ log(1+cλ)
c , we have f ′(λ) = −x+ 1

1+cλ = 0 ⇐⇒ λ = 1
c

(
1
x − 1

)
and 1

c

(
1
x − 1

)
∈ [0,+∞) ⇐⇒ x ∈ (0, 1) . Since f ′′(λ) = − c

(1+cλ)2 ≤ 0 , the function is
concave hence this is a maximum. This yields that for all x ∈ (0, 1) , ψ∗

L(−x) = f(1
c

(
1
x − 1

)
) =

1
c (x− 1 − log(x)) = 1

c (h(x) − 1) ≥ 0 where h(x) = x− log(x) for x ∈ (0, 1) . ■

Let η > 0 . Applying Lemma C.5 on slices of time with geometric growth rate (Ni)i∈N with
Ni = (1 + η)i−1 , we obtain Lemma C.6.

Lemma C.6. LetW 0(x) = −W0(−e−x) for x ≥ 1 , δ ∈ (0, 1) , η > 0 , s > 1 , c > 0 , and ζ be
the Riemann ζ function. Let St a 1-sub-ψE,−c process with variance process Vt = ct . Then, with
probability greater than 1 − δ , for all t ∈ N ,

St + t ≥ tW 0

(
1 + c(1 + η)

t

(
log

(
ζ(s)
δ

)
+ s log

(
1 + log(t)

log(1 + η)

)))
.
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Proof. Let g(t, δ) positive such that g(t, δ) ≤ xi(δ) for t ∈ [Ni, Ni+1) and xi(δ) ∈ (0, 1) . Using
Lemma C.5 with xi(δ) < 1 and g(t, δ) ≤ xi(δ) for t ∈ [Ni, Ni+1) , we obtain

P (∃t ∈ N : St + t ≤ tg(t, δ)) = P (∃t ∈ N : −St − t ≥ −tg(t, δ))

≤
∑
i∈N

P (∃t ∈ Ti : −St − t ≥ −txi(δ))

≤
∑
i∈N

P
(

∃t ∈ Ti : λ(−St) − ctψE,−c(λ) ≥ Ni

c
(h (xi(δ)) − 1)

)
≤
∑
i∈N

e− Ni
c

(h(xi(δ))−1)

where the last inequality uses that −St a 1-sub-ψE,−c process with variance process Vt = ct .
Taking

g(t, δ) = W 0

(
1 + c(1 + η)

t

(
log

(
ζ(s)
δ

)
+ s log

(
1 + log(t)

log(1 + η)

)))
and xi(δ) = W 0

(
1 + c

Ni
log

(
isζ(s)

δ

))
satisfies the required properties. First, we have xi(δ) ∈

(0, 1) and g(t, δ) > 0 (Lemma A.1). Second, sinceW 0 is decreasing on (1,+∞) (Lemma A.1),
t ∈ [Ni, Ni+1) and i = 1 + log(Ni)

log(1+η) , we obtain

g(t, δ) ≤ W 0

1 +
c log

(
ζ(s)

δ

)
+ cs log

(
1 + log(t)

log(1+η)

)
Ni

 ≤ W 0

(
1 + c

Ni
log

(
isζ(s)
δ

))

Using Lemma A.1 for each i ∈ N yields

P (∃t ∈ N : St + t ≤ tg(t, δ)) ≤
∑
i∈N

e− Ni
c

(h(xi(δ))−1) ≤ δ

ζ(s)
∑
i∈N

1
is

= δ .

■

C.1.2 Univariate Gaussian

Empirical variance The empirical variance can be expressed as a function of a sub-exponential
process (Lemma C.7). This is obtained with manipulations derived in Appendix H of Howard
et al. [2021], in which they consider martingales with χ2 increments.

Lemma C.7. Let σ2
t be the empirical variance of t i.i.d. samples from a Gaussian distribution with

variance σ2 . Then, σ2
t

σ2 = St−1−1
t + 1 with St−1 + t − 1 =

∑t−1
i=1 Y

2
i where (Yi) are i.i.d. with

distributions N (0, 1) . In particular, St is a 1-sub-ψE,2 process and −St is a 1-sub-ψE,−2 process,
both with variance process Vt = 2t .
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Proof. Let (Xi)i∈[n] the n samples from a Gaussian distribution with parameters (µ, σ2) . Let
µ̂n and σ̂2

n be the empirical mean and variance. Let Zi = Xi−µ
σ for all i ∈ [n] , Ẑn = 1

n

∑
i∈[n] Zi

and Sn−1 =
∑n

i=1(Zi − Ẑn)2 − (n− 1) . Then, S0 = 0 and for all n ≥ 2

Sn−1 = 1
σ2

n∑
i=1

(Xi − µ̂n)2 − (n− 1) = n
σ2

n

σ2 − (n− 1) .

Rewriting the increment of Sn , we obtain for all n ≥ 2

Sn−1 − Sn−2 = (Zn − Ẑn)2 +
n−1∑
i=1

((Zi − Ẑn)2 − (Zi − Ẑn−1)2) − 1

= Z2
n + Ẑ2

n − 2ZnẐn +
n−1∑
i=1

(−2ZiẐn + 2ZiẐn−1) + (n− 1)(Ẑ2
n − Ẑ2

n−1) − 1

= Z2
n − nẐ2

n + (n− 1)Ẑ2
n−1 − 1 = n− 1

n
(Zn − Ẑn−1)2 − 1 .

Since Sn−1 =
∑n−1

s=1 (Ss − Ss−1) and S0 = 0 a.s., we obtain Sn−1 =
∑n−1

i=1 (Y 2
i − 1) where

Yn−1 =
√

n−1
n (Zn − Ẑn−1) . The (Yi) are i.i.d.with distribution N (0, 1) and the CGF of (Y 2

i − 1)
is

logEeλ(Y 2
i −1) = − log(1 − 2λ)

2 − λ = 2ψE,2(λ) for λ ∈ (−∞, 1/2) .

By Definition C.1, we have that Sn is 1-sub-ψE,2 and that −Sn is 1-sub-ψE,−2 , both with
variance process Vn = 2(n− 1) . ■

Thanks to Lemmas C.4-C.6-C.7, Corollary C.8 gives time-uniform upper and lower tails
concentrations on the empirical variance of Gaussian observation.

Corollary C.8. For i ∈ {0,−1} , letW i(x) = −Wi(−e−x) for x ≥ 1 , δ ∈ (0, 1) , η0, η1 > 0 ,
s > 1 and ζ be the Riemann ζ function. Let σ2

t+1 be the empirical variance of t+ 1 i.i.d. samples
from a Gaussian distribution with variance σ2 . Then, with probability greater than 1 − δ , for all
t ∈ N⋆ ,

σ2
t+1 ≤ σ2

(
W−1

(
1 + 2(1 + η1)

t

(
log

(
ζ(s)
δ

)
+ s log

(
1 + log(t)

log(1 + η1)

)))
− 1
t

)
.

Moreover, with probability 1 − δ , for all t ≥ t0(δ) ,

σ2
t+1 ≥ σ2

(
W 0

(
1 + 2(1 + η0)

t

(
log

(
ζ(s)
δ

)
+ s log

(
1 + log(t)

log(1 + η0)

)))
− 1
t

)
,
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where the initial time condition, which ensures the lower bound is positive, is

t0(δ) = inf
{
t | t > e

1+W0

(
2(1+η0)

e

(
log
(

ζ(s)
δ

)
+s log

(
1+ log(t)

log(1+η0)

))
−e−1

)}
.

Proof. Combining Lemmas C.4-C.6-C.7 yields the desired result. Using Lemma A.1, we know
that the upper bound is always positive. The initial time condition, after which the lower bound
is positive, is obtained by Lemma A.1

W 0

(
1 + 2(1 + η0)

t

(
log

(
ζ(s)
δ

)
+ s log

(
1 + log(t)

log(1 + η0)

)))
>

1
t

⇐⇒ t ≥ t0(δ) .

■

Empirical mean While time-uniform concentration results for the empirical mean of Gaussian
observations already exist in the literature, e.g. Kaufmann and Koolen [2021], Lemma C.9 is
given to present unified concentration results involvingW−1 . For the sake of space, we omit
the proof and refer the reader to Appendix E in Jourdan et al. [2023a] for more details.

Lemma C.9. LetW−1(x) = −W−1(−e−x) for x ≥ 1 , δ ∈ (0, 1) , s > 1 and ζ be the Riemann
ζ function. Let µt be the empirical mean of t i.i.d. samples from a Gaussian distribution with
parameter (µ, σ2) . Then, with probability greater than 1 − δ , for all t ∈ N ,

|µt − µ| ≤

√
σ2

t
W−1

(
1 + 2 log

(1
δ

)
+ 2g(s) + 2s log (2s+ log t)

)
,

where g(s) = log(ζ(s)) + s(1 − log(2s)) .
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Complements on Chapter 4

D.1 Proof of Lemma 4.2

As in Section 1.4.2, for bounded distribution, we have

{τδ < +∞} ∩ Eerr
µ (τδ) ⊆

⋃
n∈N

⋃
i ̸=i⋆

{Nn,iK−
inf(νn,i, µi) +Nn,i⋆K+

inf(νn,i⋆ , µi⋆) > c(n− 1, δ)} .

The key technical result from Agrawal et al. [2021b] is stated in Lemma D.1 without proof.

Lemma D.1 (Lemma E.1 in Agrawal et al. [2021b]). Let a compact and convex set Λ ⊆ Rd

, and q be the uniform distribution on Λ . Let gt : Λ 7→ R be any series of exp-concave functions.
Then,

max
λ∈Λ

n∑
k=1

gk(λ) ≤ logEλ∼q

[
e
∑n

k=1 gt(λ)
]

+ d log(n+ 1) + 1

For all (n, i) ∈ N × [K] , we denote by (Xk,i)k∈[Nn,i] the samples collected on arm i . Let
i⋆ = i⋆(F ) and i ∈ [K] \ {i⋆} . Using the dual formulation obtained by Honda and Takemura
[2010], we have

Nn,i⋆K+
inf(Fn,i⋆ , µi⋆)) = max

λ∈
[

0, 1
B−µi⋆

] ∑
k∈[Nn,i⋆ ]

log(1 − λ(Xk,i⋆ − µi⋆)) ,

Nn,iK−
inf(Fn,i, µi)) = max

λ∈
[

0, 1
µi

] ∑
k∈[Nn,i]

log(1 + λ(Xk,i − µi)) .
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Let q+
i and q−

i be the uniform distributions over
[
0, 1

B−µi

]
and

[
0, 1

µi

]
, which are compact and

convex sets of R . Define

Ln,i = Eλ∼q−
i

 ∏
k∈[Nn,i]

(1 + λ(Xk,i − µi)) | X1,i, · · · , XNn,i,i

 ,

Un,i = Eλ∼q+
i

 ∏
k∈[Nn,i]

(1 − λ(Xi,k − µi)) | X1,i, · · · , XNn,i,i

 ,

Y −
n,i = Nn,iK−

inf(Fn,i, µi) − log(Nn,i + 1) − 1 ,

Y +
n,i = Nn,iK+

inf(Fn,i, µi) − log(Nn,i + 1) − 1 .

With d = 1 , using Lemma D.1 with the exp-concave functions g+
k,i(λ) = log(1 − λ(Xk,i − µi))

for k ∈ [Nn,i] , and g−
k,i(λ) = log(1 + λ(Xk,i − µi)) for k ∈ [Nn,i] , yields

eY −
n,i ≤ Ln,i and eY +

n,i ≤ Un,i a.s.

Furthermore, it is easy to verify that for each arm i ∈ [K] , Ln,i and Un,i are non-negative
martingales with unit initial value L0,i = 1 and U0,i = 1 almost surely. The martingale
property is shown directly by the tower rule (conditioned on the arm sampled at time n )
and E

[
1 ± λ(XNn,i,i − µi)

]
= 1 . Furthermore, they satisfy E[Un,i] ≤ 1 and E[Ln,i] ≤ 1 . Thus,

Un,i⋆Ln,i is a non-negative martingale with unit initial value.
By concavity of log and using∑j∈{i,i⋆}Nn,j ≤ n− 1 , we have

c(n− 1, δ) ≥ log
(
K − 1
δ

)
+ 2 +

∑
j∈{i,i⋆}

log (Nn,j + 1) .

Taking a union bound over i ̸= i⋆ and using Ville’s inequality, we obtain

P
(
∃n ∈ N, ∃i ̸= i⋆, Nn,iK−

inf(Fn,i, µi) +Nn,i⋆K+
inf(Fn,i⋆ , µi⋆) > c(n− 1, δ)

)
≤
∑
i ̸=i⋆

P
(

∃n ∈ N, Y −
n,i + Y +

n,i⋆ > log
(
K − 1
δ

))

≤
∑
i ̸=i⋆

P
(

∃n ∈ N, Un,i⋆Ln,i >
K − 1
δ

)
≤ δ .

This concludes the proof.
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D.2 Proof of Lemma 4.5

D.2 Proof of Lemma 4.5

Using (4.5), u 7→ K+
inf(κ, u) is strictly convex on (m(κ), B] if and only if λ+

⋆ (κ, u) is increasing
for u > m(κ) . Using Lemma 4.4, we obtain that λ+

⋆ (κ, u) is increasing on u ∈ [u+(κ), B) (since
u → (B − u)−1 is), and null on [0,m(κ)] .

Suppose towards contradiction that u 7→ λ+
⋆ (κ, u) is not increasing for (m(κ), u+(κ)) .

Therefore, there exists an open O ⊆ (m(κ), u+(κ)) , such that u 7→ λ+
⋆ (κ, u) is constant on

O , i.e. there exists cO ∈
[
0, (B − uO)−1] such that λ+

⋆ (κ, u) = cO and uO = infu∈O u . Using
Lemma 4.4, we know that cO ∈

(
0, (B − uO)−1) . On O , u 7→ λ+

⋆ (κ, u) is constant, hence
it is continuously differentiable with null derivative. Since O ⊆ (m(κ), u+(κ)) , we have
λ+

⋆ (κ, u) ∈
(
0, (B − uO)−1) and EF

[
(1 − λ+

⋆ (κ, u)(X − u))−1] = 1 for all u ∈ O . Therefore, the
function (x, u) 7→ (1 − λ+

⋆ (κ, u)(x− u))−1 is bounded on [0, B] × O , hence integrable, and the
function u 7→ (1 − λ+

⋆ (κ, u)(x − u))−1 is continuously differentiable. Moreover, the function
x 7→

(
1 − λ+

⋆ (κ, u)(x− u)
)−2 is strictly positive and bounded on [0, B] , hence integrable with

strictly positive integrable. Having checked all the conditions to interchange the derivative
with the expectation, differentiating the above yields

0 = EF

−
λ+

⋆ (κ, u) + (u−X)∂λ+
⋆ (κ,u)
∂u(

1 − (X − u)λ+
⋆ (κ, u)

)2

 = −cOEF

[
(1 − (X − u)cO)−2

]
< 0 ,

where the strict inequality is obtained sincewe show that cO > 0 andEF

[
(1 − (X − u)cO)−2

]
>

0 . This is a contradiction, hence such O ⊂ (m(κ), u+(κ)) doesn’t exist. Therefore, u 7→ λ+
⋆ (κ, u)

is increasing on (m(κ), u+(κ)) .
By convexity, we already knew that u 7→ λ+

⋆ (κ, u) is non-decreasing on (m(κ), B] . Combin-
ing the above, we have shown that u 7→ λ+

⋆ (κ, u) is increasing on (m(κ), B] , hence u → K+
inf(κ, u)

is strictly convex on (m(κ), B] . The fact that u 7→ λ+
⋆ (κ, u) is increasing on (m(κ), u+(κ)) and

on [u+(κ), B] , yields that u 7→ λ+
⋆ (κ, u) is increasing on (m(κ), B] .

Since K+
inf(κ, u) = 0 for all u ∈ [0,m(κ)] and K+

inf is nonnegative and strictly convex for
u > m(κ) , we obtain that u 7→ K+

inf(κ, u) is increasing on (m(κ), B] .
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Complements on Chapter 5

E.1 Reduction of an ε-BAI Problem to a BAI Problem

As detailed in Chapter 2, the ( β-)characteristic time for the fixed-confidence BAI setting with
Gaussian bandits N (µ, 1) is defined as

T ⋆(ν) = min
β∈(0,1)

T ⋆
β (ν) with 2T ⋆

β (ν)−1 = max
w∈△K ,wi⋆ =β

min
i⋆ ̸=i

(µi⋆ − µi)2

1/β + 1/wi
. (E.1)

It satisfiesH(µ) ≤ T ⋆(ν) ≤ 2H(µ) whereH(µ) = 2
∑

i∈[K] ∆−2
i where ∆i⋆ = ∆min . Using the

equality at equilibrium (2.20) (Lemma 2.10), one can show that

βw⋆
β(ν)−1

i = βT ⋆
β (ν)(µi⋆ − µi)2/2 − 1 . (E.2)

Lemma E.1 gives a reduction of a ε-BAI problem to a BAI one on a modified instance, which
is easier. Thanks to Lemma E.1, it is possible to leverage existing results on T ⋆(ν) , T ⋆

β (ν) , w⋆(ν)
, w⋆

β(ν) in order to study Tε(ν) , Tε,β(ν) , Tε,β(ν, i) , wε(ν) , wε,β(ν) and wε,β(ν, i) .

Lemma E.1. Let µ ∈ RK , ε ≥ 0 and ε̃ ∈ [0, ε] and β ∈ (0, 1) . For all i ∈ Iε̃(µ) , let νε(i) be the
instance with mean µε(i) as µε(i)j = µj − ε for all j ̸= i and µε(i)i = µi . Then, for all i ∈ Iε̃(µ)
, Tε,β(ν, i) = T ⋆

β (νε(i)) and wε,β(ν, i) = w⋆
β(νε(i)) . Moreover, for all i⋆ ∈ i⋆(µ) ,

Tε(ν) = T ⋆(νε(i⋆)) and Tε,β(ν) = T ⋆
β (νε(i⋆)) .

Moreover, we have wε(ν) =
⋃

i⋆∈i⋆(µ)w
⋆(νε(i⋆)) and wε,β(ν) =

⋃
i⋆∈i⋆(µ)w

⋆
β(νε(i⋆)) .
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Proof. For ε = 0 , the result is direct by definition. Let ε > 0 and ε̃ ∈ [0, ε] . The first part
is obtained by definition of T ⋆

ε,β(ν, i) , w⋆
ε,β(ν, i) . Let i⋆ ∈ i⋆(µ) and µε(i⋆) defined as above,

hence i⋆(νε(i⋆)) = {i⋆} . For all i ∈ Iε(µ) \ i⋆(µ) , let us denote by κ(i⋆,i)
ε be an instance with

mean λ(i⋆,i)
ε such that λ(i⋆,i)

ε,i = µi and λ
(i⋆,i)
ε,j = µj − ε for all j ̸= i . If µi⋆ − µi = ε then

i⋆(λ(i⋆,i)
ε ) = {i} ∪ i⋆(µ) \ {i⋆} , otherwise i⋆(λ(i⋆,i)

ε ) = {i} . We consider the permutation σ that
swaps arm i with arm i⋆ . By symmetry, we have T ⋆(κ(i⋆,i)

ε ) = T ⋆(σ(κ(i⋆,i)
ε )) . Moreover, we

have that the gaps of σ(κ(i⋆,i)
ε ) are all strictly smaller than the gaps of µε since ε ≥ ∆i > 0

. Therefore, Lemma 11 of Barrier et al. [2022] yields that T ⋆(σ(κ(i⋆,i)
ε )) > T ⋆(νε) . We have

proved that
∀i⋆ ∈ i⋆(µ), T ⋆(νε(i⋆)) < min

i∈Iε(µ)\i⋆(µ)
T ⋆(κ(i⋆,i)

ε ) .

By symmetry T ⋆(νε(i⋆)) is constant for all i⋆ ∈ i⋆(µ) , hence we have shown that

∀i⋆ ∈ i⋆(µ), Tε(ν) = T ⋆(νε(i⋆)) .

It also shows that wε(ν) =
⋃

i⋆∈i⋆(µ)w
⋆(νε(i⋆)) . The same reasoning yields the result for Tε,β(ν)

and wε,β(ν) . ■

Lemma E.2 links the characteristic times for ε-BAI where ε ∈ {ε0, ε1} .

Lemma E.2. Let µ ∈ RK such that |i⋆(µ)| = 1 . Let ε0 > ε1 . Then, for all β ∈ (0, 1) , we have

Tε0(ν)(∆min+ε0)2 ≥ Tε1(ν)(∆min+ε1)2 and Tε0,β(ν)(∆min+ε0)2 ≥ Tε1,β(ν)(∆min+ε1)2.

Let ε0 < ε1 . Then,

Tε0(ν)(∆max + ε0)2 ≥ Tε1(ν)(∆max + ε1)2 andTε0,β(ν)(∆max + ε0)2 ≥ Tε1,β(ν)(∆max + ε1)2 .

Proof. Let i⋆(µ) = {i⋆} . Let ε0 > ε1 . Using Lemma E.1, we have

2Tε(ν)−1(∆min + ε)−2 = max
w∈ΣK

min
j ̸=i⋆

∆̃j(ε)2

1/wi⋆ + 1/wj
with ∆̃j(ε) = µ⋆ − µj + ε

∆min + ε
.

To conclude the first part of the first result, a sufficient condition is to show that ∆̃j(ε1) ≥ ∆̃j(ε0)
for all j ̸= i⋆ . Direct manipulations show that, for all j ̸= i⋆ ,

∆̃j(ε1) ≥ ∆̃j(ε0) ⇐⇒ 1 − ε0 − ε1
µ⋆ − µj + ε0

≥ 1 − ε0 − ε1
∆min + ε0

⇐⇒ µ⋆ − µj ≥ ∆min ,

hence the result holds. The same proof can be used to obtain the second part of the first result.
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E.2 Proof of Lemma 5.6

Let ε0 < ε1 . Using Lemma E.1, we have

2Tε(ν)−1(∆max + ε)−2 = max
w∈ΣK

min
j ̸=i⋆

∆̄j(ε)2

1/wi⋆ + 1/wj
with ∆̄j(ε) = µ⋆ − µj + ε

∆max + ε
.

To conclude the first part of the second result, a sufficient condition is to show that ∆̄j(ε1) ≥
∆̄j(ε0) for all j ̸= i⋆ . Direct manipulations show that, for all j ̸= i⋆ ,

∆̄j(ε1) ≥ ∆̄j(ε0) ⇐⇒ 1 + ε1 − ε0
µ⋆ − µj + ε0

≥ 1 + ε1 − ε0
∆max + ε0

⇐⇒ µ⋆ − µj ≤ ∆max ,

hence the result holds. The same proof can be used to obtain the second part of the second
result. ■

E.2 Proof of Lemma 5.6

Let i ∈ Iε/2(µ) , hence µi ≥ µ⋆ − ε/2 . Let µε(i) as in Lemma E.1 which satisfies that i⋆(νε(i)) =
{i} . Let ∆i,j = µi − µj and ∆i,i = µi − maxj ̸=i µj . Then, we have

Tε,1/2(ν, i) = T ⋆
1/2(νε(i)) ≤ 2T ⋆(νε(i)) ≤ 8

∑
j∈[K]

(∆i,j + ε)−2 ≤ 8
∑

j∈[K]
(∆j + ε/2)−2 ,

where we used i ∈ Iε/2(µ) for the last inequality. Since ∆j ≥ 0 , we conclude that Tε,β(ν, i) ≤
32K/ε2 . Then, we have

Tε,1/2(ν, i) = T ⋆
1/2(νε(i)) ≥ T ⋆(νε(i)) ≥ 2

∑
j∈[K]

(∆i,j + ε)−2 .

Likewise, using Lemma E.1 and (E.2), we obtain that, for all j ̸= i ,

wε,1/2(ν)−1
j /2 = w⋆

1/2(νε(i))−1
j /2 = T ⋆

1/2(νε(i))(µi − µj + ε)2/4 − 1

≤ 2
∑

k /∈{i,j}

(
µi − µj + ε

µi − µk + ε

)2
+ 1

where the last inequality uses what we proved above. When µk ≤ µj , the ratio is smaller than
one. When µk > µj , we have µ⋆ ≥ µk > µj ≥ µ⋆ − ε/2 , hence µk − µj ≤ ε/2 and

µi − µj + ε

µi − µk + ε
≤ 1 + ε/2

µ⋆ − µk + ε/2 ≤ 2 .

Therefore, we obtain wε,1/2(ν)−1
j /2 ≤ 8(K − 2) + 1 , which concludes the result.
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E.3 Proof of Lemma 5.7

Using the inclusion of events given by the assumption on (At,δ(n, δ))n≥t>K , we obtain
n∑

t=K+1
1 (At,δ(n, δ)) ≤

n∑
t=K+1

1 (∃kt ∈ [K], Tt(kt) ≤ Dkt(n, δ), Tt+1(kt) = Tt(kt) + 1)

≤
∑

i∈[K]

n∑
t=K+1

1 (Tt(i) ≤ Di(n, δ), Tt+1(i) = Tt(i) + 1) ≤
∑

i∈[K]
Di(n, δ) .

The second inequality is obtained by union bound. The third inequality is direct since the
number of times one can increase by one a quantity that is positive and bounded by Di(n, δ) is
at most Di(n, δ) .

E.4 Proof of Lemma 5.8

Let s ≥ 0 . For all n > K and δ ∈ (0, 1] , let En,δ = E1
n,δ ∩ E2

n,δ with (E1
n,δ)n>K and (E2

n,δ)n>K as

E1
n,δ =

{
∀k ∈ [K],∀t ≤ n, |µt,k − µk| <

√
2f1(n, δ)
Nt,k

}
,

E2
n,δ =

∀(i, k) ∈ [K]2 s.t. i ̸= k, ∀t ≤ n,
|(µt,i − µt,k) − (µi − µk)|√

1/Nt,i + 1/Nt,k

<
√

2f2(n, δ)

 ,

where f2(x, δ) = log(1/δ) + (1 + s) log(x) and f2(x, δ) = log(1/δ) + (2 + s) log(x) .
Lemma E.3 shows that when there are arms with strictly higher true mean than the one of

the leader, then at least one of those arms is undersampled.

Lemma E.3. Under E1
n,δ , for all t ∈ [n] \ [K] let BEB

t = k . Then,

∀i ̸= k, 1 (µi > µk) min{Nt,k, Nt,i} ≤ 8f1(n, δ)
(µi − µk)2 .

Proof. Under E1
n,δ , for all t ∈ [n] \ [K] , let BEB

t = k . Then, for all i ̸= k , we have

µi −
√

2f1(n, δ)
min{Nt,k, Nt,i}

≤ µi −
√

2f1(n, δ)
Nt,i

≤ µt,i ≤ µt,k ≤ µk +
√

2f1(n, δ)
Nt,k

≤ µk +
√

2f1(n, δ)
min{Nt,k, Nt,i}

.
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Re-ordering the above equations for i such that µi > µk yields the result. ■

Lemma E.4. Let ε ≥ 0 , ∆µ(ε) = mink /∈Iε(µ) ∆k and Cµ,ε0(ε) = max{2∆µ(ε)−1 − ε−1
0 , ε−1

0 }2 .
Let Aε0,ε,i = 2/∆µ(ε)2 for all i ∈ i⋆(µ) , Aε0,ε,i = Cµ,ε0(ε) for all i ∈ Iε(µ) \ i⋆(µ) , otherwise
Aε0,ε,i = max{Cµ,ε0(ε), 2/∆2

i } . For all n > K , under event En,δ , for all t ∈ [n] \ [K] such that
BEB

t /∈ Iε(µ) , there exists it ∈ [K] such that

Tt(it) ≤ 4f2(n, δ)
min{β, 1 − β}

Aε0,ε,it + 3(K − 1)/2 and Tt+1(it) = Tt(it) + 1 .

Proof. Let ∆i = µ⋆ −µi and ∆max = maxi∈[K] ∆i . When ε ≥ ∆max , we have Iε(µ)∁ = ∅ , hence
the above result holds trivially since the event BEB

t /∈ Iε(µ) cannot happen. Let ε ∈ [0,∆max) ,
i.e. Iε(µ)∁ ̸= ∅ . We will consider two distinct cases since

{Bt /∈ Iε(µ)} = {Bt /∈ Iε(µ), Ct ∈ i⋆(µ)} ∪ {Bt /∈ Iε(µ), Ct /∈ i⋆(µ)} .

Case 1. Let t ∈ [n] \ [K] such that (BEB
t , CTCε0

t ) = (i, j) with i /∈ Iε(µ) and j ∈ i⋆(µ) . Using
Lemmas 5.2 and E.3, we obtain

min{β, 1 − β} (min{Tt(i), Tt(j)} − 3(K − 1)/2) ≤ min{Nt,i, Nt,j} ≤ 8f1(n, δ)
∆2

i

≤ 8f2(n, δ)
∆2

i

,

that can be rewritten as

min{Tt(i), Tt(j)} ≤ 8f2(n, δ)
min{β, 1 − β}∆2

i

+ 3(K − 1)/2 .

Let us define ∆µ(ε) = mink /∈Iε(µ) ∆k , and

∀i /∈ Iε(µ), Dε,i = 2/∆2
i and ∀i ∈ i⋆(µ), Dε,i = 2/∆µ(ε)2 .

The above shows that there exists kt ∈ Iε(µ)∁ ∪ i⋆(µ) such that

Tt(kt) ≤ 4f2(n, δ)
min{β, 1 − β}

Dε,kt + 3(K − 1)/2 and Tt+1(kt) = Tt(kt) + 1 .

Case 2. Let t ∈ [n] \ [K] such that (BEB
t , CTCε0

t ) = (i, j) with i /∈ Iε(µ) and j /∈ i⋆(µ) . Let
i0 ∈ i⋆(µ) . Using the TC challenger, we obtain

ε0 − ∆i√
1/Nt,i + 1/Nt,i0

+
√

2f2(n, δ) ≥ µt,i − µt,i0 + ε0√
1/Nt,i + 1/Nt,i0

≥ µt,i − µt,j + ε0√
1/Nt,i + 1/Nt,j
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≥ ε0
√

min{Nt,i, Nt,j}/2 .

Using Lemma E.3, we obtain

1
1/Nt,i + 1/Nt,i0

≤ min{Nt,i, Nt,i0} ≤ 8f1(n, δ)
∆2

i

≤ 8f2(n, δ)
∆2

i

.

By distinguishing between ε0 > ∆i and ε0 ≤ ∆i and using that ∆i > 0 , we have

ε0 − ∆i√
1/Nt,i + 1/Nt,i0

+
√

2f2(n, δ) ≤ max{2ε0/∆i − 1, 1}
√

2f2(n, δ) .

Using Lemma 5.2 to lower bound min{Nt,i, Nt,j} and reordering, we have shown that

min{Tt(i), Tt(j)} ≤ max
{( 2

∆i
− 1
ε0

)2
,

1
ε2

0

}
4f2(n, δ)

min{β, 1 − β}
+ 3(K − 1)/2 .

Let us define Cµ,ε0(ε) = max{2∆µ(ε)−1 − ε−1
0 , ε−1

0 }2 . The above shows that, there exists
kt /∈ i⋆(µ) such that

Tt(kt) ≤ 4f2(n, δ)
min{β, 1 − β}

Cµ,ε0(ε) + 3(K − 1)/2 and Tt+1(kt) = Tt(kt) + 1 .

Summary. Let us define (Aε0,ε,i)i∈[K] as in the statement of Lemma E.4. Under En,δ , we
have show that, when Bt /∈ Iε(µ) , there exists it ∈ [K] such that

Tt(kt) ≤ 4f2(n, δ)
min{β, 1 − β}

Aε,ε0,it + 3(K − 1)/2 and Tt+1(kt) = Tt(kt) + 1} .

■

For all n > K , under event En,δ , combining Lemma 5.7 and E.4 forAt(n, δ) = {BEB
t /∈ Iε(µ)}

and Di(n, δ) = 4f2(n,δ)
min{β,1−β}Aε0,ε,i + 3(K − 1)/2 yields that

n∑
t=K+1

1
(
BEB

t /∈ Iε(µ)
)

≤ 4f2(n, δ)
min{β, 1 − β}

Hµ,ε0(ε) + 3K(K − 1)/2 .

where we used that∑i∈[K]Aε0,ε,i = Hµ,ε0(ε) where Hµ,ε0(ε) is defined in (5.5). To conclude
the proof of Lemma 5.8, we use that

n∑
t=K+1

1
(
BEB

t /∈ Iε(µ)
)

= n− 1 −
∑

i∈Iε(µ)

∑
j

Tn(i, j) .
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E.5 Proof of Lemma 5.12

E.5 Proof of Lemma 5.12

Let |Iε(µ)| = Iε and gε,ε0(n, δ) = 4Hµ,ε0 (ε)
min{β,1−β} f̃2(n, δ) + 3K(K − 1)/2 . Using Lemma 5.8 and the

pigeonhole principle, there exists i0 ∈ Iε(µ) such that
∑

j

Tn(i0, j) ≥ (n− 1 − gε,ε0(n, δ)) /Iε .

Therefore, we have

Nn,i0 ≥ β
∑

j

Tn(i0, j) − (K − 1) ≥ β (n− 1 − gε,ε0(n, δ)) /Iε − (K − 1) .

Let Sε,ε1,ε0,µ(δ) defined as in the statement of Lemma 5.12. Direct manipulations show that

Sε,ε1,ε0,µ(δ) ≥ sup
{
n | n− 1 ≤ gε,ε0(n, δ) + Iε

β

(
4f̃2(n, δ) max

i/∈Iε1 (µ)
Cε,i +K − 1

)}
.

Therefore, we have Nn,i0 > 4f̃2(n, δ) maxi/∈Iε1 (µ)Cε,i for all n > Sε,ε1,ε0,µ(δ) .
Let n > Sε,ε1,ε0,µ(δ) . Suppose that BEB

n = i /∈ Iε1(µ) . Using Lemma E.3, under the event
Ẽn,δ , we obtain that

min{Nn,i, Nn,i0} ≤ 8f̃1(n, δ)
(µi0 − µi)2 ≤ 4Cε,if̃2(n, δ) .

Suppose towards contradiction that min{Nn,i, Nn,i0} = Nn,i0 , then Nn,i0 ≤ 4Cε,if̃2(n, δ) . This
is a direct contradictionwithNn,i0 > 4f̃2(n, δ) maxi/∈Iε1 (µ)Cε,i since n > Sε,ε1,ε0,µ(δ) . Therefore,
we have shown that min{Nn,i, Nn,i0} = Nn,i , hence i ∈ Uε,ε1,n(n, δ) . This concludes the proof.

E.6 Proof of Lemma 5.13

We will be interested in three distinct cases since

{Uε,ε1,t(n, δ) ̸= ∅} =
{
Uε,ε1,t(n, δ) ∩ {BEB

t , CTC
t } ≠ ∅

}
∪
{
Uε,ε1,t(n, δ) ̸= ∅, Uε,ε1,t(n, δ) ∩ {BEB

t , CTC
t } = ∅, BEB

t /∈ Iε(µ)
}

∪
{
Uε,ε1,t(n, δ) ̸= ∅, Uε,ε1,t(n, δ) ∩ {BEB

t , CTC
t } = ∅, BEB

t ∈ Iε(µ)
}
,

Case 1. Let t ∈ [n] \ [K] such that {BEB
t , CTC

t } ∩ Uε,ε1,t(n, δ) ̸= ∅ . Let kt ∈ {BEB
t , CTC

t } ∩
Uε,ε1,t(n, δ) . For this kt /∈ Iε1(µ) , we have Tt+1(kt) = Tt(kt) + 1 and, by combining Lemma E.3
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and Nt,kt ≤ 4Cε,kt f̃2(n, δ) , we obtain that

Tt(kt) ≤ Nt,kt

min{β, 1 − β}
+ 3(K − 1)

2 ≤ 4f̃2(n, δ)
min{β, 1 − β}

Cε,kt + 3(K − 1)/2 .

Case 2. Let t ∈ [n] \ [K] such that Uε,ε1,t(n, δ) ̸= ∅ , Uε,ε1,t(n, δ) ∩ {BEB
t , CTC

t } = ∅ and
BEB

t /∈ Iε(µ) . Let ∆µ(ε) and Cµ,ε0(ε) defined as in the statement of Lemma 5.13. Let Dε0,ε,i =
2/∆µ(ε)2 for all i ∈ i⋆(µ) , Dε0,ε,i = Cµ,ε0(ε) for all i ∈ Iε(µ) \ i⋆(µ) , otherwise Dε0,ε,i =
max{Cµ,ε0(ε), 2/∆2

i } . Using Lemma E.4, there exists kt ∈ [K] such that

Tt(kt) ≤ 4f̃2(n, δ)
min{β, 1 − β}

Dε,ε0,kt + 3(K − 1)/2 and Tt+1(kt) = Tt(kt) + 1 .

Case 3. Let t ∈ [n] \ [K] such that Uε,ε1,t(n, δ) ̸= ∅ , Uε,ε1,t(n, δ) ∩ {BEB
t , CTC

t } = ∅ and BEB
t ∈

Iε(µ) . Let j0 ∈ Uε,ε1,t(n, δ) \ {BEB
t , CTC

t } , which is possible since Uε,ε1,t(n, δ) ∩ {BEB
t , CTC

t } = ∅
and Uε,ε1,t(n, δ) ̸= ∅ . Let us denote by (BEB

t , CTC
t ) = (i, j) with i ∈ Iε(µ) and j ̸= j0 . Using the

TC challenger, under the event En,δ , we obtain

µi − µj0 + ε0√
1/Nt,i + 1/Nt,j0

+
√

2f̃2(n, δ) ≥ µt,i − µt,j0 + ε0√
1/Nt,i + 1/Nt,j0

≥ µt,i − µt,j + ε0√
1/Nt,i + 1/Nt,j

≥ ε0
√

min{Nt,i, Nt,j}/2 .

Since µi − µj0 + ε0 ≥ ε0 > 0 , we have

µi − µj0 + ε0√
1/Nt,i + 1/Nt,j0

≤
√
Nt,j0(µi − µj0 + ε0) +

√
2f̃2(n, δ)

≤
(

2 µi − µj0 + ε0
mink∈Iε(µ)(µk − µj0) + 1

)√
2f̃2(n, δ) .

Using Lemma E.3 to lower bound min{Nt,i, Nt,j} and µi − µj0 ≤ ∆j0 for all i ∈ Iε(µ) , direct
manipulation yields that

min{Tt(i), Tt(j)} ≤ 4f̃2(n, δ)
min{β, 1 − β}

Cµ,ε0(ε, ε1)2 + 3(K − 1)/2 .

where Cµ,ε0(ε, ε1) is defined as in the statement of Lemma 5.13. For all i /∈ Iε1(µ) , it is direct
to see that Cµ,ε0(ε, ε1)2 ≥ max{1/ε2

0,maxi/∈Iε1 (µ)Cε,i} and Cε,i ≥ 2/∆2
i . The above shows that

there exists kt ∈ [K] such that

Tt(kt) ≤ 4f̃2(n, δ)
min{β, 1 − β}

Cµ,ε0(ε, ε1)2 + 3(K − 1)/2 and Tt+1(kt) = Tt(kt) + 1 .
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Summary. Let us define (Aε,ε1,ε0,i)i∈[K] as in the statement of Lemma 5.13. Under Ẽn,δ , we
have show that, when Uε,ε1,t(n, δ) ̸= ∅ , there exists it ∈ [K] such that

Tt(it) ≤ 4f̃2(n, δ)
min{β, 1 − β}

Aε,ε1,ε0,it + 3(K − 1)/2 and Tt+1(it) = Tt(it) + 1 .

E.7 Proof of Lemma 5.14

For all n > K , under event Ẽn,δ , combining Lemma 5.7 and 5.13 for At(n, δ) = {Uε,ε1,t(n, δ) ̸=
∅} and Di(n, δ) = 4f̃2(n,δ)

min{β,1−β}Aε,ε1,ε0,i + 3(K − 1)/2 yields that

n∑
t=K+1

1 (Uε,ε1,t(n, δ) ̸= ∅) ≤ 4f̃2(n, δ)
min{β, 1 − β}

H̄ε,ε1(µ, ε0) + 3K(K − 1)/2 .

where we used that∑i∈[K]Aε,ε1,ε0,i = H̄ε,ε1(µ, ε0) where H̄ε,ε1(µ, ε0) is defined in (5.8).
For all i /∈ Iε1(µ) , let us define

ti(n, δ) = max {t ∈ [n] \ [K] | i ∈ Uε,ε1,t(n, δ)} .

By definition, for all i /∈ Iε1(µ) , we have i ∈ Uε,ε1,t(n, δ) for all t ∈ (K, ti(n, δ)] and i /∈
Uε,ε1,t(n, δ) for all t ∈ (ti(n, δ), n] . Therefore, for all t ∈ (K,maxi/∈Iε1 (µ) ti(n, δ)] , we have
Uε,ε1,t(n, δ) ̸= ∅ and Uε,ε1,t(n, δ) = ∅ for all t > maxi/∈Iε1 (µ) ti(n, δ) , hence

max
i/∈Iε1 (µ)

(ti(n, δ) −K) =
n∑

t=K+1
1 (Uε,ε1,t(n, δ) ̸= ∅)

≤ 4f̃2(n, δ)
min{β, 1 − β}

H̄ε,ε1(µ, ε0) + 3K(K − 1)/2 .

Let Tε,ε1,ε0,µ(δ) defined as in the statement of Lemma 5.14. Direct manipulations show that

Tε,ε1,ε0,µ(δ) ≥ sup
{
n | n−K ≤ 4f̃2(n, δ)

min{β, 1 − β}
H̄ε,ε1(µ, ε0) + 3K(K − 1)/2

}
.

Let n > Tε,ε1,ε0,µ(δ) . Then, we have

n−K >
4f̃2(n, δ)

min{β, 1 − β}
H̄ε,ε1(µ, ε0) + 3K(K − 1)/2 ≥ max

i/∈Iε1 (µ)
(ti(n, δ) −K) ,

hence n > maxi/∈Iε1 (µ) ti(n, δ) . This conclude the proof that Uε,ε1,n(n, δ) = ∅ .
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E.8 Inversion Result

Lemma E.5 is an inversion result to upper bound a probability which is implicitly defined
based on times that are implicitly defined.

Lemma E.5. LetW−1 as in Appendix A. Let A > 0 , B > 0 , C > 0 , E > 0 , α > 0 , β > 0 and

DA,B,C(δ) = sup {x | x ≤ A(log(1/δ) + C log x) +B} ,

DA,B,C,E,α,β(δ) = sup
{
x | x ≤ A

α
W−1 (α (log(1/δ) + C log(β + log x) + E)) +B

}
.

Then,

inf{δ | x > DA,B,C(δ)} ≤ xC exp
(

−x−B

A

)
,

inf{δ | x > DA,B,C,E,α,β(δ)} ≤ eE
(
α
x−B

A

)1/α

(β + log x)C exp
(

−x−B

A

)
.

Suppose that B/A + logA > 1 and C(A,B) = sup {x | x < A log x+B} . Then, C(A,B) <
h1(A,B) with h1(z, y) = zW−1 (y/z + log z) .

Proof. Direct manipulations yield that

x > DA,B,C(δ) ⇐⇒ x > A(log(1/δ) + C log x) +B ⇐⇒ δ < xC exp
(

−x−B

A

)
.

Likewise, using Lemma A.1, we obtain

x > DA,B,C,E,α,β(δ) ⇐⇒ α
x−B

A
> W−1 (α (log(1/δ) + C log(β + log x) + E))

⇐⇒ x−B

A
− 1
α

log
(
α
x−B

A

)
> log(1/δ) + C log(β + log x) + E

⇐⇒ δ < eE
(
α
x−B

A

)1/α

(β + log x)C exp
(

−x−B

A

)
.

Since B/A+ logA > 1 , we have C(A,B) ≥ A , hence

C(A,B) = sup {x | x < A log(x) +B} = sup {x ≥ A | x < A log(x) +B} .

Using Lemma A.1 yields that

x ≥ A log x+B ⇐⇒ x

A
− log

(
x

A

)
≥ B

A
+ logA ⇐⇒ x ≥ AW−1

(
B

A
+ logA

)
.

■
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Appendix F

Complements on Chapter 6

F.1 Proof of Lemma 6.3

Using the inclusion of events given by the assumption on (At(n, δ))K<t≤n , we obtain

T∑
t=K+1

1 (At(n, δ)) ≤
T∑

t=K+1
1 (Nt,it ≤ Dit(n, δ), Nt+1,it = Nt,it + 1)

≤
∑

i∈[K]

T∑
t=K+1

1 (Nt,i ≤ Di(n, δ), Nt+1,i = Nt,i + 1) ≤
∑

i∈[K]
Di(n, δ) .

The second inequality is obtained by union bound. The third inequality is direct since the
number of times one can increment by one a quantity that is positive and bounded by Di(n, δ)
is at most Di(n, δ) .

F.2 Proof of Lemma 6.5

We will be interested in three distinct cases since

{Ut(n, δ) = ∅} = {Ut(n, δ) = ∅, max
i∈[K]

µt,i > γ}︸ ︷︷ ︸
Case 1

∪ {Ut(n, δ) = ∅, max
i∈[K]

µt,i < γ}︸ ︷︷ ︸
Case 2

∪ {Ut(n, δ) = ∅, max
i∈[K]

µt,i = γ}︸ ︷︷ ︸
Case 3
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Case 1. Let k = arg maxi∈[K] µt,k . Since It ∈ arg maxi∈[K]
√
Nt,i(µt,i −γ)+ and√Nt,k(µt,k −

γ)+ > 0 , we obtain µt,It > γ . Under Ẽn,δ , we have

0 <
√
Nt,It(µt,It − γ)+ =

√
Nt,It(µt,It − γ) ≤

√
Nt,It(µIt − γ) +

√
2f̃1(n, δ) ,

hence Nt,It ≤ 2f̃1(n, δ)∆−2
γ,It

and Nt+1,It = Nt,It + 1 .
Case 2. Let It ∈ arg mini∈[K]

√
Nt,i(γ − µt,i)+ and i ∈ Ut(n, δ) . Under Ẽn,δ , we have

√
Nt,It(γ − µIt) −

√
2f̃1(n, δ) ≤

√
Nt,It(γ − µt,It) =

√
Nt,It(γ − µt,It)+ ,√

Nt,i(γ − µt,i)+ =
√
Nt,i(γ − µt,i) ≤

√
Nt,i(γ − µi) +

√
2f̃1(n, δ) ≤ 2

√
2f̃1(n, δ) .

Using that√Nt,It(γ − µt,It)+ ≤
√
Nt,i(γ − µt,i)+ , we have proven that Nt,It ≤ 18f̃1(n, δ)∆−2

γ,It

and Nt+1,It = Nt,It + 1 .
Case 3. Then, arg mini∈[K]

√
Nt,i(γ − µt,i)+ = {i ∈ [K] | µt,i = γ} . Therefore, we have

µt,It = γ hence γ = µt,It ≤ µIt +
√

2f̃1(n, δ)/Nt,It . Therefore, we have proven that Nt,It ≤
2f̃1(n, δ)∆−2

γ,It
and Nt+1,It = Nt,It + 1 .

Summary. Combining the three above cases yields the result.

F.3 Proof of Lemma 6.6

Combining Lemmas 6.5 and 5.7, we obtain∑n
t=K+1 1 (Ut(n, δ) ̸= ∅) ≤ 18H1(µ)f̃1(n, δ) . For

all i ∈ [K] , let us define ti(n, δ) = max{t ∈ (K,n] ∩ N | i ∈ Ut(n, δ)} . By definition, we have
i ∈ Ut(n, δ) for all t ∈ (K, ti(n, δ)] and i /∈ Ut(n, δ) for all t ∈ (ti(n, δ), n] . Therefore, for all
t ∈ (K,maxi∈[K] ti(n, δ)] , we have Ut(n, δ) ̸= ∅ and Ut(n, δ) = ∅ for all t > maxi∈[K] ti(n, δ) ,
hence maxi∈[K](ti(n, δ) −K) =

∑n
t=K+1 1 (Ut(n, δ) ̸= ∅) ≤ 18H1(µ)f̃1(n, δ) . Let Tµ(δ) defined

as in the statement of Lemma 6.6 and n > Tµ(δ) . Then, we have

n−K > 18H1(µ)f̃1(n, δ) ≥ max
i∈[K]

(ti(n, δ) −K) ,

hence n > maxi∈[K] ti(n, δ) . This concludes the proof that Un(n, δ) = ∅ .

F.4 Proof of Lemma 6.8

Let t ≤ n such that Ithr
γ (µ) ⊆ Ut(n, δ) . When It ∈ Ithr

γ (µ) , we have directly that Nt,It ≤(√
2f̃1(n, δ)∆−2

γ,It
+ 1

)2
andNt+1,It = Nt,It + 1 . In the following, we consider It /∈ Ithr

γ (µ) . We
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will be interested in three cases since

{Ithr
γ (µ) ⊆ Ut(n, δ), It /∈ Ithr

γ (µ)} = {Ithr
γ (µ) ⊆ Ut(n, δ), It /∈ Ithr

γ (µ), max
i∈[K]

µt,i > γ}︸ ︷︷ ︸
Case 1

∪ {Ithr
γ (µ) ⊆ Ut(n, δ), It /∈ Ithr

γ (µ), max
i∈[K]

µt,i < γ}︸ ︷︷ ︸
Case 2

∪ {Ithr
γ (µ) ⊆ Ut(n, δ), It /∈ Ithr

γ (µ), max
i∈[K]

µt,i = γ}︸ ︷︷ ︸
Case 3

.

Case 1. Let k = arg maxi∈[K] µt,i . Since It ∈ arg maxi∈[K]
√
Nt,i(µt,i −γ)+ and√Nt,k(µt,k −

γ)+ > 0 , we have µt,It > γ . Since It /∈ Ithr
γ (µ) , under Ẽn,δ , we have

√
Nt,It(µt,It − γ)+ =

√
Nt,It(µt,It − γ) ≤

√
Nt,It(µIt − γ) +

√
2f̃1(n, δ) .

Using that√Nt,It(µt,It − γ)+ > 0 , we obtain Nt,It ≤ 2f̃1(n, δ)∆−2
γ,It

and Nt+1,It = Nt,It + 1 .
Case 2. Let It ∈ arg mini∈[K]

√
Nt,i(γ − µt,i)+ . Since It /∈ Ithr

γ (µ) , under Ẽn,δ , for all
i ∈ Ithr

γ (µ) , we have
√
Nt,It(γ − µIt) −

√
2f̃1(n, δ) ≤

√
Nt,It(γ − µt,It) =

√
Nt,It(γ − µt,It)+√

Nt,i(γ − µt,i)+ =
√
Nt,i(γ − µt,i) ≤

√
Nt,i(γ − µi) +

√
2f̃1(n, δ) ≤

√
2f̃1(n, δ) .

Combining both inequality by using that√Nt,It(γ−µt,It)+ ≤
√
Nt,i(γ−µt,i)+ yields√Nn,In(γ−

µIt) ≤ 2
√

2f̃1(n, δ) , hence Nt,It ≤ 8f̃1(n, δ)∆−2
γ,It

and Nt+1,It = Nt,It + 1 .
Case 3. Then, It ∈ arg mini∈[K]

√
Nt,i(γ − µt,i)+ = {i ∈ [K] | µn,i = γ} . Therefore, we have

γ = µn,In ≤ µIt +
√

2f̃1(n, δ)/Nn,In . Since It /∈ Ithr
γ (µ) , we obtain Nt,It ≤ 2f̃1(n, δ)∆−2

γ,It
and

Nt+1,It = Nt,It + 1 .
Summary. Combining the three above cases yields the result.

F.5 Proof of Lemma 6.9

Let i ∈ Ithr
γ (µ) ∩ Un(n, δ)∁ . Then, Nn,i >

(√
2f̃1(n, δ)∆−2

γ,i + 1
)2
> 2f̃1(n, δ)∆−2

γ,i . Under Ẽn,δ ,
we have maxj∈[K] µn,j ≥ µn,i ≥ µi −

√
2f̃1(n, δ)/Nn,i > γ , hence

ı̂n = In ∈ arg max
i∈[K]

√
Nn,i(µn,i − γ)+ .
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Suppose towards contradiction that Ithr
γ (µ)∁ ∩ arg maxi∈[K]

√
Nn,i(µn,i − γ)+ ̸= ∅ . Let i ∈

Ithr
γ (µ)∁ ∩ arg maxi∈[K]

√
Nn,i(µn,i −γ)+ ̸= ∅ . It is direct to see that µn,i > γ , otherwise there is

a contradiction. Then, using that i ∈ Ithr
γ (µ)∁ (i.e. µi ≤ γ ), we have for all j ∈ Ithr

γ (µ)∩Un(n, δ)∁

√
2f̃1(n, δ) ≥

√
Nn,i(µi − γ) +

√
2f̃1(n, δ) ≥

√
Nn,i(µn,i − γ) =

√
Nn,i(µn,i − γ)+ ,√

Nn,j(µn,j − γ)+ =
√
Nn,j(µt,j − γ) ≥

√
Nn,j(µj − γ) −

√
2f̃1(n, δ)/Nn,j

>
(√

Nn,j − 1
)

(µj − γ) >
√

2f̃1(n, δ) .

Since i ̸= j and√Nn,i(µn,i −γ)+ ≥
√
Nn,j(µn,j −γ)+ , combining the above yields

√
2f̃1(n, δ) >√

2f̃1(n, δ) which is a contradiction. Therefore, ı̂n ∈ arg maxi∈[K]
√
Nn,i(µn,i − γ)+ ⊆ Ithr

γ (µ) .

F.6 Proof of Lemma 6.10

Let (Di(n, δ))i∈[K] as in Lemma 6.8. Combining Lemmas 6.8 and 5.7, we obtain

n∑
t=K+1

1
(
Ithr

γ (µ) ⊆ Ut(n, δ)
)

≤
∑

i∈[K]
Di(n, δ) .

For all i ∈ Ithr
γ (µ) , let us define ti(n, δ) = max{t ∈ (K,n] ∩ N | i ∈ Ut(n, δ)} . By definition, we

have i ∈ Ut(n, δ) for all t ∈ (K, ti(n, δ)] and i /∈ Ut(n, δ) for all t ∈ (ti(n, δ), n] . Therefore, for
all t ∈ (K,mini∈Ithr

γ (µ) ti(n, δ)] , we have Ithr
γ (µ) ⊆ Ut(n, δ) and Ithr

γ (µ) ∩ Ut(n, δ)∁ ̸= ∅ for all
t > maxi∈[K] ti(n, δ) , hence

min
i∈Ithr

γ (µ)
(ti(n, δ) −K) =

n∑
t=K+1

1
(
Ithr

γ (µ) ⊆ Ut(n, δ)
)

≤
∑

i∈[K]
Di(n, δ) .

LetSµ(δ)defined as in the statement of Lemma 6.10 andn > Sµ(δ) . Using that (a+1)2 ≤ 2a2+2 ,
we have Sµ(δ) ≥ sup

{
n | n ≤

∑
i∈[K]Di(n, δ) +K

}
. Then, we have n−K >

∑
i∈[K]Di(n, δ) ≥

mini∈Ithr
γ (µ)(ti(n, δ) − K) , hence n > mini∈Ithr

γ (µ) ti(n, δ) and Ithr
γ (µ) ∩ Un(n, δ)∁ ̸= ∅ . Using

Lemma 6.9, we obtain that ı̂n ∈ Ithr
γ (µ) . This concludes the proof.

F.7 Proof of Lemma 6.11

Using Lemma C.9 for s = 2 , we can show that

P
(

∃n ∈ N, ∃i ∈ [K],
√
Nn,i|µn,i − µi| >

√
2c(n− 1, δ)

)
≤ δ ,
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where c(n, δ) as in (6.4) since 2 log(π2/6) + 5 − 4 log(4) ≤ 1/2 .
For GAI, we have Eerr

µ (n) = {ı̂n ∈ {∅} ∪ ([K] \ Ithr
γ (µ))} when Ithr

γ (µ) ̸= ∅ , otherwise
Eerr

µ (n) = {ı̂n ̸= ∅} when Ithr
γ (µ) = ∅ . Using the stopping time τ thr

γ,δ := min(τ>,δ, τ<,δ) where
τ>,δ, τ<,δ are defined in (F.7), it is direct to show that

{τ thr
γ,δ < +∞} ∩ Eerr

µ (τ thr
γ,δ ) ⊆

⋃
n∈N

⋃
i∈[K]

{√
Nn,i|µn,i − µi| >

√
2c(n− 1, δ)

}
.

This concludes the proof.

F.8 Proof of Theorem 6.12

When combinedwith theGLR stopping (6.3) using threshold (6.4), APGAI becomes dependent
of a confidence δ ∈ (0, 1) . Let s > 1 and

En =
{

∀i ∈ [K],∀t ≤ n, |µt,i − µi| <
√

2f1(n)/Nt,i

}
, (F.1)

with f1(n) = (1 + s) logn . Using concentration arguments, we have ∑n Pν(E∁
n) ≤ Kζ(s)

where ζ is the Riemann ζ function. Using Lemma 2.25 in Chapter 2, the proof boils down
to construct a time Tµ(δ) > K such that En ⊆ {τ thr

γ,δ ≤ n} for n ≥ Tµ(δ) since it yields that
Eν [τ thr

γ,δ ] ≤ Tµ(δ) +Kζ(s) . Taking s = 2 yields the result.
As for the proof of Theorem 6.2, our main technical tool is Lemma 6.3, and we distinguish

between instances µ such that Ithr
γ (µ) = ∅ (Appendix F.8.1) and instances µ such that Ithr

γ (µ) ̸=
∅ (Appendix F.8.2). It is direct to see that Lemmas 6.6 and 6.10 can be adapted to hold for En

and f1(n) = (1 + s) logn . Using an inversion result (Lemma E.5 in Appendix E.8), we state
those results in a more explicit form and omit the proof for the sake of space.

Lemma F.1. Let µ ∈ RK such that Ithr
γ (µ) = ∅ and µi ̸= γ for all i ∈ [K] . Let s > 1 . Let

Tµ = h1(18(1 + s)H1(µ),K) where h1 is defined in Lemma E.5. For all n > Tµ , under the event
En as in (F.1), we have Nn,i > 2f1(n)∆−2

γ,i for all i ∈ [K] .

Lemma F.2. Let µ ∈ RK such that Ithr
γ (µ) ̸= ∅ and µi ̸= γ for all i ∈ [K] . Let s > 1 . Let

Sµ = h1(4(1 + s)H1(µ),K + 2|Ithr
γ (µ)|) where h1 is defined in Lemma E.5. For all n > Sµ

, under the event En as in (F.1), we have ı̂n ∈ Ithr
γ (µ) and there exists i ∈ Ithr

γ (µ) such that
Nt,i > (∆−1

γ,i

√
2f1(n) + 1)2 .

Theorem 6.12 is obtained by combining Lemmas F.4 and F.6.

229



Complements on Chapter 6

F.8.1 Instances Where Ithr
γ (µ) = ∅

When Ithr
γ (µ) = ∅ , we will have τ thr

γ,δ = τ<,δ almost surely and, for T large enough, ı̂n = ∅ and
In ∈ arg mini∈[K]

√
Nn,i(γ − µn,i)+ . Lemma F.3 formalizes this intuition.

Lemma F.3. Let s > 1 . Let Tµ = h1(18(1 + s)H1(µ),K) where h1 is defined in Lemma E.5. For
all n > Tµ , In ∈ arg mini∈[K]

√
Nn,i(γ − µn,i)+ and ı̂n = ∅ . Moreover, we have τ thr

γ,δ = τ<,δ

almost surely.

Proof. Let Tµ as in Lemma 6.6. Let n > Tµ . Using Lemma 6.6, we obtain thatNn,i > 2f1(n)∆−2
γ,i

for all i ∈ [K] . Then, under En as in (F.1), µn,i ≤ µi +
√

2f1(n)/Nn,i < γ for all i ∈ [K] , hence
maxi∈[K] µn,i < γ . Using the definition of the sampling rule when maxi∈[K] µn,i < γ , for all
n > Tµ , we have In ∈ arg mini∈[K]

√
Nn,i(γ − µn,i)+ and ı̂n = ∅ . A direct consequence is that

τ>,δ = +∞ , hence τ<,δ = τ thr
γ,δ almost surely. ■

When coupled with the GLR stopping (6.3) using threshold (6.4), Lemma F.4 gives an
upper bound on the expected sample complexity of APGAI when Ithr

γ (µ) = ∅ .

Lemma F.4. Let δ ∈ (0, 1) . Combined with GLR stopping (6.3) using threshold (6.4), the APGAI
algorithm is δ-correct and it satisfies that, for all ν ∈ DK with mean µ such that Ithr

γ (µ) = ∅ and
∆γ,min > 0 , Eν [τ thr

γ,δ ] ≤ Cµ(δ) +Kπ2/6 + 1 with H1(µ) as in (6.1) and Tµ = h1(54H1(µ),K)
with h1 is defined in Lemma E.5 and

Cµ(δ) = sup

n | n− Tµ

2H1(µ) ≤
(√

c(n− 1, δ) +
√

3 logn
)2

+
(
γ − min

i∈[K]
µi

)2

− 3 log Tµ


= sup{n | n ≤ 2H1(µ)(

√
c(n− 1, δ) +

√
3 logn)2 +D1(µ)} ,

where D1(µ) = Tµ + 2H1(µ)
(
γ − mini∈[K] µi

)2
− 6H1(µ) log Tµ . In particular, it satisfies

lim supδ→0 Eν [τ thr
γ,δ ]/ log(1/δ) ≤ 2H1(µ) .

Proof. Let Tµ as in Lemma F.3. Let n > Tµ such that En ∩ {τ thr
γ,δ > n} holds. Let w ∈ △K

such that wi = ∆−2
γ,iH1(µ)−1 for all i ∈ [K] . Using the pigeonhole principle, at time n there

exists i1 ∈ [K] such that Nn,i1 − NTµ,i1 ≥ (n − Tµ)wi1 . Let n ≥ Tµ + (mini∈[K]wi)−1 , hence
we have Nn,i1 − NTµ,i1 ≥ wi1/mini∈[K]wi ≥ 1 . Therefore, arm i1 has been sampled at least
once in (Tµ, n) . Let ti1 ∈ (Tµ, n) be the last time at which arm i1 was selected to be pulled
next, i.e. Iti1

= i1 and Nn,i1 = Nti1 +1,i1 = Nti1 ,i1 + 1 . Since ti1 > Tµ , Lemma F.3 yields that
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i1 = Iti1
∈ arg mini∈[K]

√
Nti1 ,i(γ − µti1 ,i)+ . Moreover, we have

Nti1 ,i1 = Nn,i1 − 1 ≥ (n− Tµ)wi1 +NTµ,i1 − 1 ≥ nwi1 + 2f1(Tµ) − TµH1(µ)−1

∆2
γ,i1

− 2 ,

where we used that NTµ,i1 ≥ NTµ+1,i1 − 1 > 2f1(Tµ + 1)∆−2
i1

and f1 is increasing. Under En as
in (F.1), using that i1 = Iti1

∈ arg mini∈[K]
√
Nti1 ,i(γ − µti1 ,i)+ , we obtain

√
Nti1 ,i1(γ − µti1 ,i1)+ =

√
Nti1 ,i1(γ − µti1 ,i1) ≥

√
Nti1 ,i1(γ − µi1) −

√
2f1(n)

≥
√

(nwi1(γ − µi1)2 + 2f1(Tµ) − TµH1(µ)−1 − 2(γ − µi1)2) −
√

2f1(n)

=
√

(n− Tµ)H1(µ)−1 + 2f1(Tµ) − 2(γ − µi1)2 −
√

2f1(n) .

Since i1 = Iti1
∈ arg mini∈[K]

√
Nti1 ,i(γ − µti1 ,i)+ , using that the condition of the stopping rule

is not met at time ti1 yields√
2c(n− 1, δ) ≥

√
2c(ti1 − 1, δ) ≥ min

j∈[K]

√
Nti1 ,j(γ − µti1 ,j)+ =

√
Nti1 ,i1(γ − µti1 ,i1)+ hence√

2c(n− 1, δ) ≥
√

(n− Tµ)H1(µ)−1 + 2f1(Tµ) − 2(γ − µi1)2 −
√

2f1(n) .

Using µi1 ≥ mini∈[K] µi , the above inequality can be rewritten as

n− Tµ ≤ 2
(√

c(n− 1, δ) +
√
f1(n)

)2
H1(µ) + 2H1(µ)

(
(γ − min

i∈[K]
µi)2 − f1(Tµ)

)
.

Let us define

Cµ(δ) = sup
{
n | n− Tµ

2H1(µ) ≤
(√

c(n− 1, δ) +
√
f1(n)

)2
+ (γ − min

i∈[K]
µi)2 − f1(Tµ)

}
.

It is direct to notice that Tµ+(mini∈[K]wi)−1 = Tµ+(γ−mini∈[K] µi)2H1(µ) ≤ Cµ(δ) . Therefore,
we have shown that for n ≥ Cµ(δ) + 1 , we have En ⊂ {τ<,δ ≤ n} = {τ thr

γ,δ ≤ n} (by using
Lemma F.3). Using Lemma 2.25, we obtain Eν [τ thr

γ,δ ] ≤ Cµ(δ) +Kζ(s) + 1 . Taking s = 2 , using
that ζ(2) = π2/6 and f1(n) = 3 logn yields the second part of the result. Direct manipulations
show that

lim sup
δ→0

Eν [τ thr
γ,δ ]

log(1/δ) ≤ lim sup
δ→0

Cµ(δ)
log(1/δ) ≤ 2H1(µ) .

According to Lemma 6.1, we have proven asymptotic optimality and Lemma 2.2 gives the
δ-correctness of the APGAI algorithm.

■
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F.8.2 Instances Where Ithr
γ (µ) ̸= ∅

When Ithr
γ (µ) ̸= ∅ , we will have τ thr

γ,δ = τ>,δ almost surely and, for T large enough, ı̂n = In ∈
arg maxi∈Ithr

γ (µ)
√
Nn,i(µn,i − γ)+ . Lemma F.5 formalizes this intuition.

Lemma F.5. Let s > 1 . Let Sµ = h1(4(1 + s)H1(µ),K + 2|Ithr
γ (µ)|) where h1 is defined in

Lemma E.5. For all n > Sµ , ı̂n = In ∈ arg maxi∈Ithr
γ (µ)

√
Nn,i(µn,i − γ)+ . Moreover, we have

τ thr
γ,δ = τ>,δ almost surely.

Proof. Let Sµ as in Lemma F.2 Let n > Sµ . Using Lemma 6.10, there exists i ∈ Ithr
γ (µ) such

that Nn,i > 2f1(n)∆−2
γ,i . Then, we have µn,i ≥ µi −

√
2f1(n)/Nn,i > γ , hence maxi∈[K] µn,i > γ

. Using Lemma 6.9 and the definition of the recommendation rule when maxi∈[K] µn,i > γ , we
obtain that ı̂n = In ∈ Ithr

γ (µ) . Using the definition of the sampling rule when maxi∈[K] µn,i > γ

, for all n > Sµ , we have ı̂n = In ∈ arg maxi∈Ithr
γ (µ)

√
Nn,i(µn,i − γ)+ . A direct consequence is

that τ<,δ = +∞ , hence τ>,δ = τ thr
γ,δ almost surely. ■

When coupled with the GLR stopping (6.3) using threshold (6.4), Lemma F.6 gives an
upper bound on the expected sample complexity of APGAI when Ithr

γ (µ) ̸= ∅ .

Lemma F.6. Let δ ∈ (0, 1) . Combined with GLR stopping (6.3) using threshold (6.4), the APGAI
algorithm is δ-correct and it satisfies that, for all ν ∈ DK with mean µ such that Ithr

γ (µ) ̸= ∅ and
∆γ,min > 0 , Eν [τ thr

γ,δ ] ≤ Cµ(δ)+Kπ2/6+1 , whereHγ(µ) as in (6.1) and Sµ = h1(12H1(µ),K+
2|Ithr

γ (µ)|) with h1 is defined in Lemma E.5 and

Cµ(δ) = sup
{
n | n− Sµ − 1

2Hγ(µ) ≤
(√

c(n− 1, δ) +
√

3 logn
)2

− 3 logSµ

Hγ(µ) maxi∈Ithr
γ (µ) ∆2

γ,i

}

= sup{n | n ≤ 2Hγ(µ)(
√
c(n− 1, δ) +

√
3 logn)2 +Dγ(µ)} ,

where Dγ(µ) = Sµ + 1 − 6 log Sµ

max
i∈Ithr

γ (µ) ∆2
γ,i

. In particular, it satisfies

lim supδ→0 Eν [τ thr
γ,δ ]/ log(1/δ) ≤ 2Hγ(µ) .

Proof. Let Sµ as in Lemma F.5. Let n > Sµ such that En ∩ {τ thr
γ,δ > n} holds. Using Lemma F.5,

we know that It ∈ Ithr
γ (µ) for all t ∈ (Sµ, n] . Direct summation yields that

n− Sµ =
∑

i∈Ithr
γ (µ)

(
Nn,i −NSµ,i

)
+

∑
t∈(Sµ,n]

1
(
It /∈ Ithr

γ (µ)
)

=
∑

i∈Ithr
γ (µ)

(Nn,i −NSµ,i) .

232



F.8 Proof of Theorem 6.12

At time Sµ + 1 , let i1 ∈ Ithr
γ (µ) as in Lemma F.5, i.e. such that NSµ+1,i1 >

2f1(Sµ+1)
(µi1 −γ)2 . Using that

f1 is increasing, we obtain

∑
j∈Ithr

γ (µ)
NSµ,j ≥ NSµ+1,i1 − 1 > 2f1(Sµ + 1)

(µi1 − γ)2 − 1 ≥ 2f1(Sµ)
maxi∈Ithr

γ (µ)(µi − γ)2 − 1 .

Therefore, we have shown that∑i∈Ithr
γ (µ)Nn,i ≥ n−g(Sµ) with g(Sµ) = Sµ − 2f1(Sµ)

max
i∈Ithr

γ (µ) ∆2
γ,i

+1

. Let Aγ = |Ithr
γ (µ)| and w ∈ △Aγ such that wi = (µi − γ)−2Hγ(µ)−1 with Hγ(µ) as in (6.1).

Using the pigeonhole principle, there exists i0 ∈ Ithr
γ (µ) such that Nn,i0 ≥ wi0(n − g(Sµ)) =

∆−2
i0
Hγ(µ)−1(n − g(Sµ)) . Let us define Eµ(δ) = sup {n | n ≤ g(Sµ) + 2Hγ(µ)f1(n)} and let

n > Eµ(δ) . Then, we have Nn,i0 ≥ ∆−2
i0
Hγ(µ)−1(n − g(Sµ)) > 2f1(n)∆−2

i0
, hence µn,i0 > γ .

Using that the condition of the stopping rule is not met at time T , we obtain√
2c(n− 1, δ) ≥ max

i∈[K]

√
Nn,i(µn,i − γ)+ ≥

√
Nn,i0(µn,i0 − γ)+ =

√
Nn,i0(µn,i0 − γ) .

Then, we obtain√
2c(n− 1, δ) ≥

√
Nn,i0(µi0 − γ) −

√
2f1(n) ≥

√
n− g(Sµ)

√
wi0(µi0 − γ)2 −

√
2f1(n)

=
√
n− g(Sµ)Hγ(µ)−1/2 −

√
2f1(n) .

The above can be rewritten as n ≤ 2
(√

c(n− 1, δ) +
√
f1(n)

)2
Hγ(µ) + g(Sµ) . Using that

g(Sµ) = Sµ − 2f1(Sµ)
max

i∈Ithr
γ (µ) ∆2

γ,i
+ 1 , let us define

Dµ(δ) = sup
{
n | n− Sµ − 1

2Hγ(µ) ≤
(√

c(n− 1, δ) +
√
f1(n)

)2
− f1(Sµ)
Hγ(µ) maxi∈Ithr

γ (µ) ∆2
γ,i

}
.

It is direct to see that Dµ(δ) ≥ Eµ(δ) ≥ Sµ . Therefore, we have shown that for n ≥ Dµ(δ) + 1 ,
we have En ⊂ {τ>,δ ≤ n} = {τ thr

γ,δ ≤ n} (by using Lemma F.5). Using Lemma 2.25, we obtain
Eν [τ thr

γ,δ ] ≤ Dµ(δ) +Kζ(s) + 1 . Taking s = 2 , using that ζ(2) = π2/6 and f1(n) = 3 logn yields
the second part of the result. Direct manipulations show that

lim sup
δ→0

Eν [τ thr
γ,δ ]

log(1/δ) ≤ lim sup
δ→0

Dµ(δ)
log(1/δ) ≤ 2Hγ(µ) .

■
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Appendix G

Complements on Chapter 7

G.1 Proof of Lemma 7.2

As explained in Section 1.4.1, change of measures with a low-level form (involving probabilities
and not expectation) is key to deriving a lower bound on the sample complexity of ε-BAI
[Garivier and Kaufmann, 2021, Degenne and Koolen, 2019]. We use Lemma 19 in Degenne
and Koolen [2019], which is proven using (1.4).

Lemma G.1 (Lemma 19 in Degenne and Koolen [2019]). Let z ∈ Z . Let w and
λ1, · · · , λK be a minimax witness from Lemma G.2, and let us introduce the abbreviation
αa = ∥θ −

∑
k∈[K]wkλk∥2

aaT for all a ∈ A . Fix a sample size n , and consider any event A ∈ Fn .
Then, for any β > 0 , maxk∈[K] Pλk

(A) ≥ e−nTε(ν,z)−1−β
(
Pν(A) − exp

(
−β2

2n maxa∈A αa

))
, where

Tε(ν, z)−1 = supw∈ΣK
infλ∈¬εz ∥θ − λ∥2

Vw
.

We rewrite Lemma 2 in Degenne and Koolen [2019] in the setting of (ε, δ)-PAC BAI for
transductive linear bandits with Gaussian distribution.

Lemma G.2 (Lemma 2 in Degenne and Koolen [2019]). For any answer z ∈ Z
, the divergence from ν to ¬εz equals Tε(ν, z)−1 = supw∈ΣK

infλ∈¬εz ∥θ − λ∥2
Vw

=
infP maxa∈A Eλ∼P

[
∥θ − λ∥2

aaT

]
where the infimum ranges over probability distributions on ¬εz

supported on (at most)K points.

We will bound the expectation of the stopping time τδ through Markov’s inequality. For
all T > 0 , Eν [τδ] ≥ T (1 − Pν (τδ ≤ T )) . The event {τδ ≤ T} can be partitioned depending
on the answer whether the answer is ε-optimal or not, and then whether it’s z⋆(θ) or not. By
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Complements on Chapter 7

hypothesis,

Pν (τδ ≤ T, ẑ /∈ Zε(θ)) ≤ Pν (τδ < +∞, ẑ /∈ Zε(θ)) ≤ δ

0 ≤ lim
δ→0

Pν (τδ ≤ T, ẑ ∈ Zε(θ) \ z⋆(θ)) ≤ lim
δ→0

Pν (τδ < +∞, ẑ ∈ Zε(θ) \ z⋆(θ)) = 0 .

Then, it is direct to show that limδ→0 Pν (τδ ≤ T ) ≤
∑

z∈z⋆(θ) limδ→0 Pν (τδ ≤ T, ẑ = z) . Let
z ∈ z⋆(θ) , w and λ1, · · · , λK be a minimax witness from Lemma G.2. Then by Lemma G.1, for
any β > 0

Pν (τδ ≤ T, ẑ = z) ≤ exp
(

T

Tε(ν, z) + β

)
max
k∈[K]

Pλk
(τδ ≤ T, ẑ = z) + exp

(
−β2

2T maxa∈A αa

)

≤ δ exp
(

T

Tε(ν, z) + β

)
+ exp

(
−β2

2T maxa∈A αa

)

where the second inequality uses that λk ∈ ¬εz for all k ∈ [K] , hence z ∈ z⋆(θ) ⊆ Z \ Zε(λk)
and that the strategy satisfies Pλ (τδ < +∞, ẑ /∈ Zε(λ)) ≤ δ for all λ ∈ M . Let α = maxa∈A αa

. For η ∈ (0, 1) , T = (1 − η) minz∈z⋆(θ) Tε(ν, z) log(1/δ) , β = η
2
√

1−η

√
T

minz∈z⋆(θ) Tε(ν,z) log(1/δ) ,
and all z ∈ z⋆(θ) ,

Pν (τδ ≤ T, ẑ = z)

≤ δ exp
(

T

Tε(ν, z) + η

2
√

1 − η

√
T log(1/δ)

minz∈z⋆(θ) Tε(ν, z)

)
+ exp

(
−η2 log(1/δ)

8(1 − η) minz∈z⋆(θ) Tε(ν, z)α

)

≤ δ exp
(

(1 − η/2) log 1
δ

)
+ exp

(
−η2 log(1/δ)

8(1 − η) minz∈z⋆(θ) Tε(ν, z)α

)
= δη/2 + δη2/(8(1−η) minz∈z⋆(θ) Tε(ν,z)α) →δ→0 0 ,

where we used that minz∈z⋆(θ) Tε(ν, z) ≤ Tε(ν, z) . Since we have shown limδ→0 Pν (τδ ≤ T ) = 0
for T = (1 − η) minz∈z⋆(θ) Tε(ν, z) log(1/δ) , we obtain

lim
δ→0

Eν [τδ]
log(1/δ) ≥ lim

δ→0

T

log(1/δ) (1 − Pν (τδ ≤ T )) ≥ (1 − η) min
z∈z⋆(θ)

Tε(ν, z)
(

1 − lim
δ→0

Pν (τδ ≤ T )
)

= (1 − η) min
z∈z⋆(θ)

Tε(ν, z) .

Taking η → 0 concludes the proof.
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Appendix H

Complements on Chapter 8

H.1 Proof of Lemma 8.3

Since Slater’s condition holds, the KKT conditions are necessary and sufficient for global
optimality. Let λ ≥ 0 , α ∈ RK

+ and γ ∈ RZ−1
+ be the dual variables for the Lagrangian

L(ϕ,w;λ, α, γ) = ϕ+ λ

(∑
a∈A

wa − 1
)

−
∑
a∈A

αawa +
∑

x∈Z\{z}
γx(ϕ− Cε(z, x; ν, w)) .

Using the complementary slackness condition, we have γx(ϕ− Cε(z, x; ν, w)) = 0 for all x ̸= z .
Combining it with the stationarity condition for arm a , we obtain

λ = αa +
∑

x∈Z\{z}
γx
∂Cε(z, x; ν, w)

∂wa
hence λ

ϕ
= αa

ϕ
+

∑
x∈Z\{z}

γx

Cε(z, x; ν, w)
∂Cε(z, x; ν, w)

∂wa
.

Multiplying by wa and using that αawa = 0 yields that

wa
λ

ϕ
=

∑
x∈Z\{z}

γx
wa

Cε(z, x; ν, w)
∂Cε(z, x; ν, w)

∂wa
.

Using that ∑a∈Awa = 1 (since λ > 0 ) and ∑a∈A
wa

Cε(z,x;ν,w)
∂Cε(z,x;ν,w)

∂wa
, summing those

equations yields that λ = ϕ
∑

x∈Z\{z} γx . By scaling, we can consider γ̃x = γx(
∑

x∈Z\{z} γx)−1

for all x ∈ Z \ {z} , i.e. γ̃ ∈ ΣZ−1 .
This completes the proof for the necessity of the conditions in the theorem for optimality.

Those conditions are also sufficient since it is direct to construct dual variables such that the
KKT conditions hold.
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Complements on Chapter 8

H.2 Proof of Lemma 8.4

As in Lemma 2.5, the goal is to explicit the dual variable γ ∈ ΣZ−1 from Lemma 8.3 by using
the KKT conditions. The crucial difference lies in the fact that the optimal allocation has no
reason to be densely supported. Since mina∈Awa = 0 , some Lagrangian multipliers αa might
not be null while other Lagrangian multipliers γx might be null.

Let A1 = {a ∈ A | αa = 0} and Z1 = {x ∈ Z \ {z} | γx > 0} , hence we have
ϕ = Cε(z, x; ν, w) for all x ∈ Z1 and, for all a /∈ A1 , wa = 0 . Then, we obtain λ =∑

x∈Z1 γx
∂Cε(z,x;ν,w)

∂wa
for all a ∈ A1 . Multiplying by wa and summing over A1 yields that

λ =
∑

x∈Z1

γx

∑
a∈A1

wa
∂Cε(z, x; ν, w)

∂wa
=
∑

x∈Z1

γxCε(z, x; ν, w) =
∑

x∈Z1

γxϕ = ϕ .

This completes the proof of the necessity of the conditions. Those conditions are also sufficient
since it is direct to construct dual variables such that the KKT conditions hold.
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List of Notation

Acronyms and Abbreviations

a.s. almost surely
e.g. exempli gratia, means “for example”
i.e. id est, means “that is”
i.i.d. independent and identically distributed
l.h.s. left hand side
r.h.s. right hand side
s.t. such that
w.r.t. with respect to
BAI Best Arm Identification
GAI Good Arm Identification
GLR Generalized log-likelihood ratio
KL Kullback-Leibler
MAB Multi-Armed Bandits
General Notation

[K] Set of integers {1, · · · ,K}

X ∼ ν The random variable X has distribution ν
Pν(E) Probability of a random event E under distribution ν
Eν [X] Expectation of a random variable X under distribution ν
1 (E) Indicator function of an event E

X∁ Complement of a set X

X̊ Interior of a set X
o , O , Ω and Θ ( õ , Õ , Ω̃ and Θ̃ ) Landau’s notation (up to polylogarithmic terms)

ζ Riemann ζ function, ζ(s) :=
∑+∞

n=1 n
−s for all s > 1

W0 ,W−1 Positive and negative branches of the LambertW function,W (x)eW (x) := x

W 0 ,W−1 Transform on the LambertW function,W i(x) := −Wi(−e−x) for all x ≥ 1
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List of Notation

CG Function defined in (B.1)
⟨x, y⟩ Cartesian product between vectors, ⟨x, y⟩ =

∑
i∈[d] xiyi

X Closure of set X
∂X Boundary of set X

∥x∥p ℓp-norm, e.g. ∥x∥2 =
√

⟨x, x⟩ , ∥x∥1 =
∑

i∈[d] |xi| , ∥x∥∞ = maxi∈[d] |xi|

(x)+ Positive part, max{x, 0}

Πi∈[K]Xi Cartesian product between sets or distributions (Xi)i∈[K]

Vw Design matrix,∑a∈A waaa
T

1A Indicator vector for a set A ⊆ [d] , 1A = (1 (i ∈ A))i∈[d]

{ei}i∈[d] Canonical basis of Rd , ei = (1 (j = i))j∈[d]

diag(x) ∈ Rd×d Diagonal matrix for a vector x ∈ Rd

Span(A) Span of a set of vectors A

Id ∈ Rd×d Identity matrix
V † Moore-Penrose pseudo-inverse of matrix V
Distributions

ΣK (K − 1)-dimensional probability simplex, ΣK :=
{
w ∈ RK

+ | w ≥ 0,
∑

i∈[K] wi = 1
}

D Set of distributions
DN Set of Gaussian distributions with unknown variance
DNσ Set of Gaussian distributions with variance σ2

Dσ Set of σ-sub-Gaussian distributions
DB Set of Bernoulli distributions
P(R) Probability distributions over R
B Upper bound for bounded distributions
D[0,B] Set of bounded distributions on [0, B]

Dexp One-parameter exponential family
δx Dirac distribution at x
KL Kullback-Leibler divergence
dKL Mean-parametrized Kullback-Leibler divergence
kl Mean-parametrized Kullback-Leibler divergence of the Bernoulli family
m Mean operator,m(ν) = EX∼ν [X]

K+
inf Infimum of KL divergence r.h.s. , K+

inf(ν, u) := inf{KL(ν, κ) | κ ∈ D, m(κ) > u}

K−
inf Infimum of KL divergence l.h.s. , K−

inf(ν, u) := inf{KL(ν, κ) | κ ∈ D, m(κ) < u}

P ≪ Q Q absolutely dominates P
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List of Notation

PX Push-forward measure of a random variable X under probability P

Multi-Armed Bandits

K ∈ N Number of arms
i ∈ [K] Arm
νi ∈ D Distribution of arm i

ν ∈ DK Vector of distributions, ν := (νi)i∈[K]

I ⊆ R Set of possible means for the arms, I = {m(ν) | ν ∈ D}

M ⊆ Rd Set of possible mean vectors
µi ∈ I Mean of arm i , µi = EX∼νi [X]

σ2
i ∈ R+ Variance of arm i , σ2

i = EX∼νi
[(X − µi)2]

µ ∈ IK Vector of means, µ := (µi)i∈[K]

σ2 ∈ RK
+ Vector of variance, σ2 := (σ2

i )i∈[K]

µ⋆ ∈ I Largest mean, µ⋆ := maxi∈[K] µi

i⋆(µ) ⊆ [K] Set of arms with highest mean, i⋆(µ) := arg maxi∈[K] µi

i⋆ ∈ [K] Arm with highest mean when unique (i.e. best arm), i⋆(µ) = {i⋆}

∆i ∈ R+ Gap of arm i , ∆i := µ⋆ − µi

∆min(µ) ∈ R⋆
+ Smallest strictly positive gap, ∆min(µ) := mini/∈i⋆(µ)(µ⋆ − µi)

∆min(µ) ∈ R+ Minimum gap between any arm, ∆min(µ) := mini ̸=j |µi − µj |

∆max ∈ R+ Largest gap, ∆max := maxi∈[K](µ⋆ − µi)

¬i ⊆ IK Set of alternative parameters s.t. i is not a best arm, ¬i := {λ ∈ IK | i /∈ i⋆(λ)}

T ⋆(ν) , T ⋆
β (ν) ∈ R⋆

+ Asymptotic ( β-)characteristic time for BAI
w⋆(ν) , w⋆

β(ν) ∈ ΣK Asymptotic ( β-)optimal allocation for BAI
ε ∈ R⋆

+ Slack parameter for ε-BAI (additive or multiplicative)
Iε(µ) ⊆ [K] ε-good arms (additive) for µ , Iε(µ) := {i ∈ [K] | ∆i ≤ ε}

Imul
ε (µ) ⊆ [K] ε-good arms (multiplicative) for µ , Imul

ε (µ) := {i ∈ [K] | ∆i ≤ εµ⋆}

Tε(ν) , Tε,β(ν) , Tε,β(ν, i) ∈ R⋆
+ Asymptotic ( β-)characteristic time for ε-BAI (w.r.t. arm i ∈ Iε(µ) )

wε(ν) , wε,β(ν) , wε,β(ν, i) ∈ ΣK Asymptotic ( β-)optimal allocation for ε-BAI (w.r.t. arm i ∈ Iε(µ) )
γ ∈ R Threshold parameter for GAI
Ithr

γ (µ) ⊆ [K] Good arms w.r.t. the threshold γ for the vector of means µ
C(i, j; ν, w) , Cε(i, j; ν, w) Transportation cost between arm i and arm j w.r.t. (ν, w)

iF (ν) , iF (ν, w) Set of (instantaneous) furthest answers for bandit instance ν (resp. w.r.t. w )
Strategies

n , T ∈ N Time or budget
δ ∈ (0, 1) Confidence at level 1 − δ
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List of Notation

τδ , τε,δ , τ thr
γ,δ ∈ N Sample complexity, i.e. stopping time at confidence level 1 − δ for ( ε-)BAI and GAI

c(n, δ) ∈ R⋆
+ Stopping threshold function at time n at confidence level 1 − δ

In ∈ [K] Arm sampled at time n
Nn,i ∈ N Number of pulls of arm i before time n , Nn,i :=

∑
t∈[n−1] 1 (It = i)

µn,i ∈ R Empirical mean of arm i before time n , µn,i := N−1
n,i

∑
t∈[n−1] 1 (It = i)Xn,i

Bn ∈ [K] Leader answer at time n
Cn ∈ [K] Challenger answer at time n
Xn,In ∈ R Sample observed at the end of time n , Xn,In ∼ νIn

Fn History before time n , σ-algebra Fn := σ(U1, I1, X1,I1 , · · · , In−1, Xn,In−1 , Un)
ı̂n ∈ [K] Answer recommended before time n
Tn(i, j) ∈ N Counts of (Bt, Ct) = (i, j) before time n , Tn(i, j) :=

∑
t∈[n−1] 1 ((Bt, Ct) = (i, j))

Tn(i) ∈ N Counts of i ∈ {Bt, Ct} before time n , Tn(i) :=
∑

t∈[n−1] 1 (i ∈ {Bt, Ct})

N i
n,j ∈ N Counts of (Bt, Ct, It) = (i, j, j) before n , N i

n,j :=
∑

t∈[n−1] 1 ((Bt, Ct, It) = (i, j, j))

β ∈ (0, 1) Fixed proportion
Wn(i, j) ,Wε,n(i, j) Empirical transportation cost for the pair of answers (i, j) before time n for ( ε-)BAI
βn(i, j) ∈ (0, 1) IDS proportion at time n for the leader/challenger pair (i, j)
νn Empirical estimator of ν
β̄n(i, j) ∈ (0, 1) Averaged IDS proportion, β̄n(i, j) := Tn(i, j)−1∑

t∈[n−1] 1 ((Bt, Ct) = (i, j))βt(i, j)

Eerr
µ (n) error event at time n, i.e. ı̂n is not a correct answer for µ

Linear Bandits

d ∈ N Dimension
θ ∈ M Regression parameter
A ⊆ Rd Set of arm vectors
a ∈ A Arm vector
Z ⊆ Rd Set of answer vectors
z ∈ Z Answer vector
Z ∈ N Number of correct answers, Z = |Z|
µa , µz ∈ R Mean of an arm or an answer, µa := ⟨θ, a⟩ and µz := ⟨θ, z⟩
z⋆(θ) ⊆ Z Set of answers with highest mean for the mean vector θ , z⋆(θ) := arg maxz∈Z⟨θ, z⟩

¬εz ⊆ M Set of alternative s.t. z is not an ε-good answer, ¬εz := {λ ∈ M | z /∈ Zε(λ)}
zF (θ) ⊆ Z Set of furthest answers for the mean vector θ
zF (θ, w) ⊆ Z Set of furthest answers for the mean vector θ and the allocation w
In ∈ A Arm sampled at time n
ẑn ∈ Z Answer recommended before time n
θn ∈ Rd Ordinary Least Square (OLS) estimator before time n , θn := V −1

Nn

∑
t∈[n−1] Xt,at

at

LX ∈ R⋆
+ Maximum ℓ2-norm of an arm vector in X , LX := maxx∈X ∥a∥2
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