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Motivation
Goal: Identify the item having the highest averaged return with a given confidence.

Typical guaranty: Asymptotic optimality of the expected sample complexity.

△! Not informative for moderate confidence level !

☞ This paper: sample complexity upper bounds for any confidence level !

Best-arm identification (BAI)

K arms: arm i ∈ [K] is associated with a Gaussian distribution N (µi, 1).

Goal: identify i⋆ = argmaxi∈[K] µi with confidence 1− δ ∈ (0, 1).

Algorithm: at time n,
• Sequential test: if the stopping time τδ is reached, then return the candidate

answer ı̂n, else
• Sampling rule: pull arm In and observe Xn ∼ N (µIn , 1).

Fixed-confidence: given an confidence δ ∈ (0, 1), define a stopping time τδ which
is δ-correct, i.e. Pµ(τδ < +∞, ı̂τδ ̸= i⋆) ≤ δ, and
☞ Minimize the expected sample complexity Eµ[τδ].

Lower bound on the expected sample complexity

? What is the best one could achieve ?

☞ Garivier and Kaufmann (2016): For all δ-correct algorithms and all Gaussian
instances with µ ∈ RK , lim infδ→0 Eµ[τδ]/ log(1/δ) ≥ T ⋆(µ) where

T ⋆(µ) = min
β∈(0,1)

T ⋆
β (µ) and T ⋆

β (µ)
−1 = max

w∈△K ,wi⋆=β
min
j ̸=i⋆

1

2

(µi⋆ − µj)
2

1/β + 1/wj
.

TTUCB: UCB-based Top Two sampling rule

Input: fixed proportion β ∈ (0, 1) and function g : N → R+.

Get the UCB leader Bn = argmaxi∈[K]{µn,i +
√
g(n)/Nn,i};

Get the TC challenger Cn ∈ argmini ̸=Bn

(µn,Bn−µn,i)+√
1/Nn,Bn+1/Nn,i

;

Use tracking to get In = Bn if NBn

n,Bn
≤ βLn+1,Bn

, otherwise In = Cn;

Output: next arm to sample In.

(Nn,i, µn,i): number of pulls and empirical mean of arm i before time n.
Ln,i: number of selection of arm i as leader before time n.
N i

n,j : number of pulls of arm j when arm i is leader before time n.

• Take β = 1/2 since w⋆(µ)i⋆ ≤ 1/2 and T ⋆
1/2(µ)/T

⋆(µ) ≪ 2 for most instances.

• Choose small g s.t. Pµ(En) ≥ 1−Kn−s with

En = {∀(t, i) ∈ [n1/α]× [K], µi ∈ [µt,i ±
√

g(t)/Nt,i]}

where α, s > 1, e.g. gu(n) = 2α(1 + s) log n.

δ-correct sequential test

? How to obtain a δ-correct sequential test for Gaussian distributions ?

☞ GLR stopping rule: recommend ı̂n ∈ argmaxi∈[K] µn,i and stop at time

τδ = inf{n > K | min
i ̸=ı̂n

µn,̂ın − µn,i√
1/Nn,̂ın + 1/Nn,i

≥
√

2c(n− 1, δ)} , (1)

with c(n, δ) ≃ log(1/δ) + 2 log log(1/δ) + 4 log(4 + log(n/2)).

Asymptotic confidence guarantees

Theorem 1. Let (δ, β) ∈ (0, 1)2. Combined with GLR stopping (1), the TTUCB
algorithm is δ-correct and asymptotically β-optimal for all µ ∈ RK having distinct
means, i.e. it satisfies lim supδ→0 Eν [τδ]/ log(1/δ) ≤ T ⋆

β (µ).

Limitations: no guarantees (1) for moderate regime of δ and (2) when sub-
optimal arms share the same mean.

Finite confidence guarantees

Theorem 2. Let δ ∈ (0, 1). Combined with GLR stopping (1), the TTUCB algo-
rithm using β = 1/2 and gu with α = s = 1.2 satisfies that, for all µ ∈ RK such that
|i⋆(µ)| = 1,

Eµ[τδ] ≤ inf
x∈[0,(K−1)−1]

max
{
T0(δ, x), C

1.2
µ , C0(x)

6, (2/ε)1.2
}
+ 12K ,

where ε ∈ (0, 1] and

Cµ = O (H(µ) logH(µ)) with H(µ) = 2∆−2
min +

∑
i ̸=i⋆

2(µi⋆ − µi)
−2 ,

lim sup
δ→0

T0(δ, 0)/ log(1/δ) ≤ 2T ⋆
1/2(µ) ,

C0(x) = 2/(εaµ(x)) + 1 with aµ(x) = (1− x)dµ(x) max{min
i ̸=i⋆

w⋆
1/2(µ)i, x/2}

and dµ(x) = |{i ̸= i⋆ | w⋆
1/2(µ)i < x/2}|.

Refined analysis: Clipping mini ̸=i⋆ w
⋆
1/2(µ)i by x/2 yields C0(x) = O(K/ε).

☞ Generic method that improves the analysis of APT (Locatelli et al, 2016).

Table 1: Upper bound on the sample complexity τδ in probability (§) or in expectation (†). The notation
Õ hides polylogarithmic factors. (*) Upper bound on Eµ[τδ1 (E)] where P[E∁] ≤ γ. (**) Asymptotic
bound holds for instances with distinct means. Ordered references: Kalyanakrishnan et al. (2012),
Karnin et al. (2013), Jamieson et al. (2014), Degenne et al. (2019), Katz-Samuels et al. (2020), Wang
et al. (2021), Barrier et al. (2022).

Algorithm Asymptotic δ → 0 Finite δ when H(µ) → +∞
LUCB1† O (H(µ) log(1/δ)) O (H(µ) logH(µ))
Exp-Gap§ O (H(µ) log(1/δ)) O(

∑
i ̸=i⋆ ∆

−2
i log log∆−1

i )

lil’ UCB§ O (H(µ) log(1/δ)) O(
∑

i ̸=i⋆ ∆
−2
i log log∆−1

i )

DKM† T ⋆(µ) log(1/δ) + Õ(
√

log(1/δ)) Õ
(
KT ⋆(µ)2

)
Peace§ O (T ⋆(µ) log(1/δ)) O (H(µ) log(K/∆min))
FWS† T ⋆(µ) log(1/δ) +O(log log(1/δ)) O

(
eKH(µ)19/2

)
EBS†* T ⋆(µ) log(1/δ) + o(1) O

(
KH(µ)4/w2

min

)
TTUCB†** T ⋆

β (µ) log(1/δ) +O(log log(1/δ)) O ((H(µ) logH(µ))
α
)

Tracking instead of randomization

• Fully deterministic algorithm.
• Deterministic counts simplifies the non-asymptotic analysis.
• Faster convergence of Nn,i⋆/n to β, at least in O(1/n) instead of O(1/

√
n).

Lemma 1. For all n > K and all i ∈ [K], we have −1/2 ≤ N i
n,i − βLn,i ≤ 1.

Generic regret minimizing leader

The Top Two method is a generic wrapper to convert any regret minimization
algorithm into a best arm identification strategy.

Sufficient condition: Arm i⋆ is leader except for a sublinear number of times.

☞ Upper bound (Nn,i)i ̸=i⋆ or
∑

i̸=i⋆ ∆iNn,i under a concentration event.

Lemma 2 (UCB). Under En, we have Ln,i⋆ ≥ n− 24H(µ) log n− 2K − 1.

Experiments

Figure 1: Empirical stopping time for δ = 0.1 on (a) random instances with µ1 = 0.6 and µi ∼
U([0.2, 0.5]) for i ̸= 1 (K = 10) and (b) instances µi = 1−

(
i−1
K−1

)0.6
with H(µ) = Θ(K1.2).

Figure 2: Empirical stopping time for δ = 0.1 on “1-sparse” instances: (a) (K,µi⋆ ,∆) = (35, 0, 0.5)
with T ⋆

1/2
(µ)/T ⋆(µ) ≈ 3/2 and (b) (µi⋆ ,∆) = (0, 0.25) with H(µ) = Θ(K). Constant β = 1/2 and

adaptive proportions (A-), IDS (You et al., 2023) sets βn = Nn,Cn/(Nn,Cn +Nn,Bn ).

Conclusion
1. First non-asymptotic analysis of Top Two algorithms, which holds for in-

stances having a unique best arm.

2. Deterministic asymptotically β-optimal Top Two algorithm using UCB leader
and tracking instead of randomization.


