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UNIMODAL BANDITS

3 Problem Setting

• Input: Arms (νi)i∈[K] of distributions with
means µi

• Unimodality: ∃⋆ ∈ [K] such that µi ≤ µi+1

for all i < ⋆ and µi > µi+1 for all i ≥ ⋆

• Goal: Identify ⋆ ∈ argmax
i∈[K]

µi with probabil-

ity at least 1−δ while minimizing the sample
complexity

Eµ[τδ] =
∑
i∈[K]

Eµ[Ni(τδ)]

DEPENDENCY IN THE RISK PARAMETER δ

� (Instance-Dependent) Sample Complexity Lower Bound

Thm. For any δ-correct strategy, and any unimodal bandit µ it holds that Eµ[cτδ ] ≥ T ∗(µ) log

(
1

2.4δ

)
where

T ∗(µ)−1 := sup
ω∈∆̃K(µ)

min
i∈N (⋆)

gi(ω,µ), gi(ω,µ) = inf
x∈(µi,µ⋆)

ω⋆d(µ⋆, x) + ωid(µi, x)

∆̃K(µ) = {ω ∈ ∆K |∀i /∈ N (⋆) ∪ ⋆, ωi = 0}

and N (⋆) are the neighbors of arm ⋆.

� Remarks

• Sparsity pattern of the oracle-weights! No dependency in T ∗(µ)−1 on K.

• Lower bound is exactly BAI lower bound but on arms in N (⋆) ∪ ⋆, i.e., [2]

• We have fast algorithms for computing ω∗(µ) (e.g., bisection methods)

STOPPING RULES

� Full-sum Stopping Rule

inf
λ∈Alt(µ̂(t))

∑
i∈[K]

Ni(t)d(µ̂i(t), λi) ≥ cK(t− 1, δ), cK(t, δ) ≈ log
1

δ
+K log t

• The l.h.s. can be very large, although only 3 arms matter

• Cannot use the empirical threshold c̃(t, δ) = log

(
1 + log t

δ

)
commonly used in experiments

• Gaussian bandits with variance σ2. Arm means 0 but one with mean ∆. After init, l.h.s. ≈ KDσ

� Local GLR Stopping Rule

ıt = argmax
k∈[K]

min
j∈N (i)

Wt(i, j), Wt(i, j) = inf
λj>λi

∑
k∈{i,j}

Nk(t)d(µ̂k(t), λk)

min
j∈N (ıt)

Wt(ıt, j) ≥ c(t− 1, δ), c(t− 1, δ) ≈ log

(
K

δ

)
+ log(t)

• We exploit local information to stop

• No linear dependency in K, but logarithmic (due to union bound)

OPTIMISTIC TRACK AND STOP

� How to apply Optimistic Track and Stop? [1]
é Confidence Intervals

Θt := {θ|∀i ∈ [K] : Ni(t)d(µ̂i(t), θi) ≤ f(t)}, f(t) ≈ log(t)

Ë Structured Confidence Intervals Θ̃t = Θt ∩ S where S are unimodal bandits

/ Compute
µ+(t),ω(t) ∈ argmax

λ∈Θ̃t

max
ω∈∆̃K(λ)

min
i∈N (i⋆(λ))

gi(ω,λ)

� Can be computed in O(K) using K calls to T ∗(·)−1

� There exists a time on the good event where O-TaS pulls only arms within ⋆ ∪N (⋆)
� Asymptotically optimal but finite time bound does not match dependency in K

UNIMODAL TOP-TWO SAMPLING

� How to apply Top-Two Approaches? [3]
Ë (Structured) Leader

Bt = argmax
i∈[K]

max
λ∈Θ̃t

λi

Ë (Unimodal) Challenger
Ct = argmin

j∈N (Bt)

Wt(Bt, j)

/ Arms are pulled according to fixed-design

� Computing the leader takes O(K) and no calls to T ∗(·)−1

� There exists a time on the good event after which the leader is always ⋆
� Asymptotically β-optimal with fixed design, finite time bound is Õ(K)

DEPENDENCY IN THE NUMBER OF ARMS

� (Another) Lower Bound
Thm. Let ∆ > 0, and ν(i) = N (µ(i), IK) where

µ
(i)
i = ∆ and µ

(i)
j = 0 if j ̸= i. For δ ≤ 0.25, we

have:

1

K

∑
i∈[K]

Eν(i) [τδ] ≥
K

64∆2
.

� ∃ν(i) such that Eν(i) [τδ] ≥
K

64∆2

� In the worst-case, there is a linear depen-
dency in K

UNIMODAL TAS

� How to apply Track and Stop? [2]

• We can compute ω∗ only for unimodal µ’s

• Project µ̂(t) → µ̃(t) to be unimodal!

� Projection error to 0 � Optimality
� Projection takes O(K)
� Forced Exploration do not exploit sparsity!

EXPERIMENTS SUMMARY

• All our algorithms outperform asymptotic
optimal algorithms for generic structures
[1, 4, 5]

• U-TaS suffers a lot when K is large and µ is
not flat
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