BEST-ARM IDENTIFICATION IN UNIMODAL BANDITS
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UNIMODAL BANDITS DEPENDENCY IN THE RISK PARAMETER ¢

£+ Problem Settin 2 (Instance-Dependent) Sample Complexity Lower Bound
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Thm. For any J-correct strategy, and any unimodal bandit p it holds that E,, [c.,] > T™ () log ()

e Input: Arms (v;) ic(x) of distributions with 2.40

Means f; where
Unimodality: 3% € | K] such that p; < p;41
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Goal: Identify x € argmax p; with probabil-
i€[K]

ity at least 1 — 6 while minimizing the sample

complexity

Eulrs) = ) Eu[Ni(ms)]
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and N (x) are the neighbors of arm x.

2 Remarks
e Sparsity pattern of the oracle-weights! No dependency in 7*(u) ! on K.
e Lower bound is exactly BAI lower bound but on arms in NV (%) U %, i.e., [2]

DEPENDENCY IN THE NUMBER OF ARMS e We have fast algorithms for computing w™ () (e.g., bisection methods)

2 (Another) Lower Bound |
Thm. Let A > 0, and vV = N(u'?, Ix) where

5@) = 0if 7 # 7. For 0 < 0.25, we

STOPPING RULES

2 Full-sum Stopping Rule

1
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i€[K ® The lL.h.s. can be very large, although only 3 arms matter
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"® In the worst-case, there is a linear depen-
dency in K
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2 I such that E, ) (75| >

e Cannot use the empirical threshold ¢(¢,d) = log ( ) commonly used in experiments

e Gaussian bandits with variance o%. Arm means 0 but one with mean A. After init, Lh.s. ~ KD,

2 Local GLR Stopping Rule
UNIMODAL TAS

1+ = argmax min Wt(iaj)a

2 How to apply Track and Stop? [2] ke[K] JEN(2)

 We can compute w” only for unimodal p's min  Wy(u, j) > c(t — 1,6)

]EN(’L{;)

c(t —1,6) ~ log (?) + log(t)

* Project fi(t) — fi(t) to be unimodal!

e We exploit local information to stop
i Projection error to 0 9 Optimality
i Projection takes O(K)

"® Forced Exploration do not exploit sparsity!

* No linear dependency in K, but logarithmic (due to union bound)

OPTIMISTIC TRACK AND STOP

EXPERIMENTS SUMMARY 2 How to apply Optimistic Track and Stop? [1]

e All our algorithms outperform asymptotic ¥ Confidence Intervals

optimal algorithms for generic structures

[1,4,5] O = {0|Vi € [K]| : N;(t)d(j1:(),0:) < f(¢)},

f(t) = log(t)

e U-TaS suffers a lot when K is large and p is « Structured Confidence Intervals ©, = ©, NS where S are unimodal bandits

not flat <[> Compute
9i (wv )‘)

pt(t),w(t) € argmax max  min
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il Can be computed in O(K) using K calls to 7%(-) "
i There exists a time on the good event where O-TaS pulls only arms within x U N (%)
"® Asymptotically optimal but finite time bound does not match dependency in K

UNIMODAL TOP-TWO SAMPLING

2 How to apply Top-Two Approaches? [3]
v (Structured) Leader

B; = argmax max \;
’LE[K] AEO;

v (Unimodal) Challenger

Cy = argmin Wy(By, 7)
JEN (By)

</> Arms are pulled according to fixed-design

o Computing the leader takes O(K) and no calls to T*(-) !
16 There exists a time on the good event after which the leader is always x

"® Asymptotically S-optimal with fixed design, finite time bound is O(K)




